Положение плоскости в пространстве





Положение плоскости в пространстве можно определить:

1. Тремя точками, не лежащими на одной прямой;

2. Прямой и точкой вне ее;

3. Двумя пересекающимися прямыми;

4. Двумя параллельными прямыми (рис.1).

 

1В1С1) (a1С) (mn) δ (bс)
Рис. 1.

 

Рис. 2.

Плоскость может быть задана также отсеками плоской фигуры (рис.2).

 

Возможны следующие положения плоскости относительно плоскостей проекций:

1.Плоскость, не перпендикулярная ни одной из плоскостей проекций, называется плоскостью общего положения (рис.1 и 2).

2. Частные положения плоскости:

а) Плоскость, перпендикулярная к горизонтальной плоскости проекций , называется горизонтально-проецирующей (рис.3). Горизонтальная проекция такой плоскости представляет собой прямую, являющуюся следом этой плоскости = угол , который образуется между плоскостью и , проецируется на плоскость без искажения.

Горизонтальные проекции всех точек и любых фигур, лежащих в горизонтально-проецирующей плоскости, совпадают со следом этой плоскости α1= (АВС)∩ (рис. 3).

 

Рис. 3.

б) Плоскость, перпендикулярная к фронтальной плоскости проекций , называется фронтально-проецирующей плоскостью, изображается следом плоскости, полученной от пересечения заданной плоскости (АВС) с фронтальной плоскостью проекций . = (АВС)∩ .

Рис. 4.

Фронтальные проекции всех точек и фигур, лежащих в этой плоскости, совпадают с ее фронтальным следом. Угол φ между плоскостью и проецируется без искажения, т.е.φ2 ≡ φ (рис. 4.).

 

Плоскость, перпендикулярная к профильной плоскости проекций называется профильно-проецирующей плоскостью.

Частный случай, когда профильно-проецирующая плоскость проходит через ось ОХ и делит пополам угол между плоскостями и - плоскость симметрии (рис.5).

 

 

 
Рис.5  
     

Основные свойства проецирующих плоскостей состоят в том, что все геометрические образы, лежащие в них, на одной из плоскостей проекций изображаются прямой, совпадающей со следом плоскости, т.е. с линией пересечения проецирующей плоскости с соответствующей плоскостью проекций.

Плоскости, перпендикулярные к двум плоскостям проекций, называется плоскостями уровня. Плоскость δ и . Фронтальная и профильная проекция такой плоскости – горизонтальные прямые. Любая фигура, расположенная в плоскости δ2 на горизонтальную плоскость проекций проецируется без искажения.

а) Плоскость δ, параллельная горизонтальной плоскости проекций , называется горизонтальной плоскостью (рис.6). Изображается следом плоскости, полученным от пересечения плоскости δ с плоскостью проекций : δ2= δ . АВС δ; А2В2С2 δ2; А1В1С1=АВС.

 

 

   
Рис.6.

б) Плоскость , параллельная плоскости , называется фронтальной (рис.7). 1= . АВС ; А1В1С1 1; А2В2С2=АВС.

 

 
Рис.7.

Любая фигура, расположенная в этой плоскости, проецируется на без искажений.

Все геометрические образы, расположенные в плоскостях, параллельных плоскостям проекций, проецируются на эти плоскости проекций без искажения.

3.2. ПРЯМАЯ И ТОЧКА В ПЛОСКОСТИ

1. Прямая принадлежит плоскости, если она имеет с этой плоскостью две общие точки (рис.8).

2. Прямая принадлежит плоскости, если она имеет с плоскостью одну общую точку и параллельна прямой, лежащей в этой плоскости (рис.9).

 

Рис.8. Рис.9
с (аb); [12] c (аb)   С (АВС); С d; С1 d1; С2 d2; d║[AB]; d1║[A1B1]; d2║[A2B2].  
     

Построение точки в плоскости производится, исходя из условия, что она должна находиться на прямой, лежащей в этой плоскости. Т.о. задача на построение точки в плоскости сводится к задаче на построение прямой в этой плоскости (рис.10). Чтобы построить горизонтальную проекцию точки М, принадлежащей плоскости (а b), нужно провестипрямую (а b); [12] ℓ; [1222] 2; [1121] 1; М2 2 ; М1 1 .

 

Рис.10

 

 

3.3. ГЛАВНЫЕ ЛИНИИ ПЛОСКОСТИ

Главными линиями плоскости называются прямые, лежащие в данной плоскости и параллельные плоскостям проекций , или . Линии плоскости, параллельные называются горизонталями плоскости; линии плоскости, параллельные фронталями плоскости; линии плоскости, параллельные профильными прямыми (рис.11).

Линии наибольшего ската – прямые, проведенные по плоскости перпендикулярно к горизонталям (рис.12).

Линия наибольшего ската и ее горизонтальная проекция образуют линейный угол, которым измеряется двугранный угол, составленный плоскостью (f ∩ h) и плоскостью проекций .

С помощью главных линий плоскости оказывается удобным решать вопросы о взаимном расположении точки и плоскости (рис.13). Дана плоскость (f ∩ h) и точка А. Нужно определить принадлежит ли точка А плоскости. Для этого через точку А проводим горизонталь. Горизонтальная проекция точки А вне горизонтали, значит точка А не лежит в плоскости.

 

Рис.11 Рис.12а
Рис. 12б Рис. 13

 






Дата добавления: 2017-10-04; просмотров: 62; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2017 год. Материал предоставляется для ознакомительных и учебных целей. | Обратная связь
Генерация страницы за: 0.007 сек.