Метод простых итераций.


Суть метода простых итераций в принципе совпадает с методом, изложенным для решения систем линейных алгебраических уравнений. Для нелинейного уравнения метод основан на переходе от уравнения

f(x) = 0 (2)

к эквивалентному уравнению x = φ (x). Этот переход можно осуществить разными способами, в зависимости от вида f(x). Например, можно положить

φ (x) = x + bf(x), (3)

где b = const, при этом корни исходного уравнения (2) не изменятся.

Если известно начальное приближение к корню x0, то новое приближение x1 = φ (x0), т.е. общая схема итерационного процесса:

xk+1 = φ (xk). (4)

Наиболее простой критерий окончания процесса .

Критерий сходимости метода простых итераций: если вблизи корня |φ/(x)| < 1, то итерации сходятся. Если указанное условие справедливо для любого x, то итерации сходятся при любом начальном приближении. Исследуем выбор константы b в функции (3) с точки зрения обеспечения максимальной скорости сходимости. В соответствии с критерием сходимости наибольшая скорость сходимости обеспечивается при |φ/(x)| = 0. При этом, исходя из (3),

b = –1/f /(x), и итерационная формула (4) переходит в

,

т.е. в формулу метода Ньютона (1). Таким образом, метод Ньютона является частным случаем метода простых итераций, обеспечивающим самую высокую скорость сходимости из всех возможных вариантов выбора функции φ (x).

 


Численное решение систем нелинейных уравнений

Постановка задачи.

Требуется решить систему нелинейных уравнений (1). В координатном виде эту задачу можно записать так: , где 1 ≤ kn.

Убедиться в существовании решения и количестве корней, а также выбрать нулевое приближение в случае системы двух уравнений с двумя неизвестными можно, построив графики функций в удобных координатах. В случае сложных функций можно посмотреть поведение аппроксимирующих их полиномов. Для трех и более неизвестных, а также для комплексных корней, удовлетворительных способов подбора начального приближения нет.

Метод Ньютона.

Обозначим некоторое приближение к корню системы уравнений . Пусть малое . Вблизи каждое уравнение системы можно линеаризовать следующим образом:

, 1 ≤ kn. (2)

Это можно интерпретировать как первые два члена разложения функции в ряд Тейлора вблизи . В соответствии с (1), приравнивая (2) к нулю, получим:

, 1 ≤ kn. (3)

Мы получили систему линейных уравнений, неизвестными в которой выступают величины . Решив ее, например, методом Гаусса, мы получим некое новое приближение к , т.е. . Выражение (3) можно представить как обобщение на систему уравнений итерационного метода Ньютона, рассмотренного в предыдущей главе:

, (4)

где в данном случае

– матрица Якоби, которая считается для каждого (s) приближения.

 

Критерием окончания итерационного процесса является условие (Можем принять под как норму , так и ). Достоинством метода является высокая скорость сходимости. Сходимость метода зависит от выбора начального приближения: если , то итерации сходятся к корню. Недостатком метода является вычислительная сложность: на каждой итерации требуется находить матрицу частных производных и решать систему линейных уравнений. Кроме того, если аналитический вид частных производных неизвестен, их надо считать численными методами.


Блок-схема метода Ньютона для решения систем нелинейных уравнений.

Так как метод Ньютона отличается высокой скоростью сходимости при выполнении условий сходимости, на практике критерием работоспособности метода является число итераций: если оно оказывается большим (для большинства задач >100), то начальное приближение выбрано плохо.

 

Частным случаем решения (4) методом Ньютона системы из двух нелинейных уравнений

являются следующие легко программируемые формулы итерационного процесса:

, где ,

,

 



Дата добавления: 2021-09-07; просмотров: 338;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.008 сек.