Вероятность и правдоподобие. Флуктуации. Случайные блуждания


«Вероятность», или «шанс»,— это слово вы слышите почти ежедневно. Вот по радио пере­дают прогноз погоды на завтра: «Вероятно, бу­дет дождь». Вы можете сказать: «У меня мало шансов дожить до ста лет». Ученые тоже часто употребляют эти слова. Сейсмолога интересует вопрос: какова вероятность того, что в следую­щем году в Южной Калифорнии произойдет землетрясение такой-то силы? Физик может спросить: с какой вероятностью этот счетчик Гейгера зарегистрирует двадцать импульсов в последующие десять секунд? Дипломата или государственного деятеля волнует вопрос: како­вы шансы этого кандидата быть избранным президентом? Ну, а вас, конечно, интересует: есть ли шансы что-либо понять в этой главе?

Под вероятностью мы понимаем что-то вроде предположения или догадки. Но почему и когда мы гадаем? Это делается тогда, когда мы хотим вынести какое-то заключение или вывод, но не имеем достаточно информации или знаний, что­бы сделать вполне определенное заключение. Вот и приходится гадать: может быть, так, а может быть, и не так, но больше похоже на то, что именно так. Очень часто мы гадаем, когда нужно принять какое-то решение, например: «Брать ли мне сегодня с собой плащ или не стоит?» «На какую силу землетрясения должен я рас­считывать проектируемое здание?» «Нужно ли мне делать более надежную защиту?» «Следует ли мне менять свою позицию в предстоящих международных переговорах?» «Идти ли мне сегодня на лек­цию?»

Иногда мы строим догадки потому, что хотим при ограничен­ности своих знаний сказать как можно больше о данной ситуа­ции. В сущности ведь любое обобщение носит характер догадки. Любая физическая теория — это своего рода догадка. Но догадки тоже бывают разные: хорошие и плохие, близкие и дале­кие. Тому, как делать наилучшие догадки, учит нас теория веро­ятностей. Язык вероятностей позволяет нам количественно го­ворить о таких ситуациях, когда исход весьма и весьма неопре­деленен, но о котором все же в среднем можно что-то сказать.

Давайте рассмотрим классический пример с подбрасыванием монеты. Если монета «честная», то мы не можем знать наверня­ка, какой стороной она упадет. Однако мы предчувствуем, что ври большом числе бросаний число выпадений «орла» и «решки» должно быть приблизительно одинаковым. В этом случае го­ворят: вероятность выпадения «орла» равна половине.

Мы можем говорить о вероятности исхода только тех наблю­дений, которые собираемся проделать в будущем. Под вероятнос­тью данного частного результата наблюдения понимается ожидаемая нами наиболее правдоподобная доля исходов с данным результатом при некотором числе повторений наблюдения. Вообразите себе повторяющееся N раз наблюдение, например подбрасывание вверх монеты. Если NА — наша оценка наибо­лее правдоподобного числа выпадений с результатом А, напри­мер выпадений «орла», то под вероятностью Р(А) результата А мы понимаем отношение

P(A) =NA/N (6.1)

Наше определение требует некоторых комментариев. Преж­де всего мы говорим о вероятности какого-то события только в том случае, если оно представляет собой возможный резуль­тат испытания, которое можно повторить. Но отнюдь не ясно, имеет ли смысл такой вопрос: какова вероятность того, что в этом доме поселилось привидение?

Вы, конечно, можете возразить, что никакая ситуация не может повториться в точности. Это верно. Каждое новое наблю­дение должно происходить по крайней мере в другое время или в другом месте. По этому поводу я могу сказать только одно: необходимо, чтобы каждое «повторное» наблюдение казалось нам эквивалентным. Мы должны предполагать по крайней мере, что каждый новый результат наблюдения возник из равноцен­ных начальных условий и из одного и того же уровня началь­ных знаний. Последнее особенно важно. (Если вы заглянули в карты противника, то, конечно, ваши прогнозы о шансах на выигрыш будут совсем другими, чем если бы вы играли честно!)

Хочу отметить, что я не собираюсь рассматривать значения N и NА в (6.1) только как результат каких-то действительных на­блюдений. Число NА — это просто наилучшая оценка того, что могло бы произойти при воображаемых наблюдениях. Поэтому вероятность зависит от наших знаний и способностей быть пророком, в сущности от нашего здравого смысла! К счастью, здравый смысл не столь уже субъективен, как это кажется на первый взгляд. Здравым смыслом обладают многие люди, и их суждения о степени правдоподобия того или иного события в большинстве случаев совпадают. Однако вероятность все же не является «абсолютным» числом. Поскольку в каком-то смыс­ле она зависит от степени нашего невежества, постольку с из­менением наших знаний она может меняться.

Отмечу еще одну «субъективную» сторону нашего определе­ния вероятности. Мы говорили, что NАэто «наша оценка на­иболее вероятного числа случаев». При этом, конечно, мы не надеялись, что число нужных нам случаев будет в точности равно NА, но оно должно быть где-то близко к NA; это число более вероятно, чем любое другое. Если подбрасывать монету вверх 30 раз, то вряд ли можно ожидать, что число выпадений «орла» будет в точности 15; скорее это будет какое-то число около 15, может быть 12, 13, 14, 15, 16 или 17. Однако если необхо­димо выбрать из этих чисел какое-то одно число, то мы бы реши­ли, что число 15 наиболее правдоподобно. Поэтому мы и пишем, что Р (орел) = 0,5.

Но почему все же число 15 более правдоподобно, чем все остальные? Можно рассуждать следующим образом: если наи­более вероятное число выпадений «орла» будет no, а полное число подбрасываний N, то наиболее вероятное число выпаде­ний «решек» равно N-NO. (Ведь предполагается, что при каж­дом подбрасывании должны выпасть только либо «орел», либо «решка» и ничего другого!) Но если монета «честная», то нет основания думать, что число выпадений «орла», например, дол­жно быть больше, чем выпадений «решки»? Так что до тех пор, пока у нас нет оснований сомневаться в честности подбрасываю­щего, мы должны считать, что Np=Nо, а следовательно, Np=no=N/2, или Р(орел) = P(решка) = 0,5.

Наши рассуждения можно обобщить на любую ситуацию, в которой возможны mразличных, но «равноценных» (т. е. равно­вероятных) результатов наблюдения. Если наблюдение может привести к mразличным результатам и ни к чему больше и если у нас нет оснований думать, что один из результатов пред­почтительнее остальных, то вероятность каждого частного исхода наблюдения А будет 1/m, т. е. Р(А) = 1/m.

Пусть, например, в закрытом ящике находятся семь шаров разного цвета и мы наугад, т. е. не глядя, берем один из них. Вероятность того, что у нас в руке окажется красный шар, равна 1/7. Вероятность того, что мы из колоды в 36 карт вытащим даму пик, равна 1/36, такая же, как и выпадение двух шесте­рок при бросании двух игральных костей.

• • •

В гл. 5 мы определяли размер ядра с помощью затеняемой им площади или так называемого эффективного сечения. По существу речь шла о вероятностях. Если мы «обстреливаем» бы­стрыми частицами тонкую пластинку вещества, то имеется некая вероятность, что они пройдут через нее, не задев ядер, однако с некоторой вероятностью они могут попасть в ядро. (Ведь ядра столь малы, что мы не можем видеть их, мы, следо­вательно, не можем прицелиться, и «стрельба» ведется вслепую.) Если в нашей пластинке имеется nатомов и ядро каждого из них затеняет площадь а, то полная площадь, затененная ядра­ми, будет равна na. При большом числе N случайных выстрелов мы ожидаем, что число попаданий NC будет так относиться к полному числу выстрелов, как затененная ядрами площадь от­носится к полной площади пластинки:

NC/N=s/A. (6.2)

Поэтому можно сказать, что вероятность попадания каждой из выстреленных частиц в ядро при прохождении сквозь пластин­ку будет равна

РC =ns/A, (6.3)

где n/Апросто число атомов, приходящихся на единицу площади пластинки.

Флуктуации

Теперь мне бы хотелось несколько подробнее показать, как можно использовать идею вероятности, чтобы ответить на во­прос: сколько же в самом деле я ожидаю выпадений «орла», если подбрасываю монету N раз? Однако, прежде чем ответить на него, давайте посмотрим, что все-таки дает нам такой «эк­сперимент». На фиг. 6.1 показаны результаты, полученные в первых трех сериях испытаний по 30 испытаний в каждой.


Фиг. 6.1. Последовательность выпадения «орла» и «решки».

Три серии опытов подбрасывания моне­ты по 30 раз в каждой серии.

 

Последовательности выпадений «орла» и «решки» показаны в том порядке, как это происходило. В первый раз получилось 11 выпадений «орла», во второй — тоже 11, а в третий — 16. Можно ли на этом основании подозревать, что монета была «не­честной»? Или, может быть, мы ошиблись, приняв 15 за наиболее вероятное число выпадений «орла» в каждой серии испытаний?

Сделаем еще 97 серий, т. е. 100 серий по 30 испытаний в каждой. Результаты их приведены в табл. 6.1.

Таблица б.1 • число выпадений «орла»

Проведено несколько серий испытаний, по 30 подбрасываний монеты в каждой


 

Взгляните на числа, приведенные в этой таблице. Вы видите, что большинство результатов «близки» к 15, так как почти все они расположены между 12 и 18. Чтобы лучше прочувствовать эти результаты, нарисуем график их распределения. Для этого подсчитаем число испытаний, в которых получилось k выпаде­ний «орла», и отложим это число вверх над k. В результате по­лучим фиг. 6.2.


 

Вертикальные линии показывают число серий, в которых выпадал k раз «орел». Пунктирная кривая показывает ожидаемое число серий с выпадением k раз «орла», полученное из вычисления вероятностей.

 

Действительно, в 13 сериях было получено 15 выпадений «орла», то же число серий дало 14 выпадений «орла»; 16 и 17 выпадений получались больше чем 13 раз. Должны ли мы из этого делать вывод, что монетам больше нравится ло­житься «орлом» вверх? А может быть, мы неправы в выборе чис­ла 15 как наиболее правдоподобного? Может быть, в действи­тельности более правдоподобно, что за 30 испытаний получает­ся 16 выпадений «орла»? Минуточку терпения! Если мы сложим вместе результаты всех серий, то общее число испытаний будет 3000, а общее число выпадений «орла» в этих испы­таниях достигает 1492, так что доля испытаний с выпадением «орла» в результате будет 0,497. Это очень близко к половине, но все же несколько меньше. Нет, мы все-таки не можем пред­полагать, что вероятность выпадения «орла» больше, чем 0,5! Тот факт, что в отдельных испытаниях «орел» чаще выпа­дал 16 раз, чем 15, является просто случайным отклонением, или флуктуацией. Мы же по-прежнему ожидаем, что наиболее правдоподобным числом выпадений должно быть 15.

Можно спросить: а какова вероятность того, что в серии из 30 испытаний «орел» выпадет 15 раз или 16, или какое-то дру­гое число раз? Мы говорим, что вероятность выпадения «орла» в серии из одного испытания равна 0,5; соответственно вероят­ность невыпадения тоже равна 0,5. В серии из двух испытаний возможны четыре исхода: ОО, OP, PO, PP. Так как каждый из них равновероятен, то можно заключить: а) вероятность двух выпадений «орла» равна 1/4; б) вероятность одного выпадения «орла» равна 1/4; в) вероятность невыпадения «орла» равна 1/4. Это происходит потому, что существуют две возможности из четырех равных получить одно выпадение «ор­ла» и только одна возможность получить два выпадения или не получить ни одного.

Рассмотрим теперь серию из трех испытаний. Третье испы­тание с равной вероятностью может дать либо «орел», либо «решку», поэтому существует только один способ получения трех выпадений «орла»: мы должны получить два выпадения «орла» в двух первых испытаниях и затем выпадение «орла» в по­следнем. Однако получить два выпадения «орла» можно уже тремя способами: после двух выпадений «орла» может выпасть «решка» и еще два способа — после одного выпадения «орла» в первых двух испытаниях выпадет «орел» в третьем. Так что число равновероятных способов получить 3, 2, 1 и 0 выпадений «орла» будет соответственно равно 1, 3, 3 и 1; полное же число всех возможных способов равно 8. Таким образом, получаются следующие вероятности: 1/8. 3/8, 3/8, 1/8.

Эти результаты удобно записать в виде диаграммы (фиг. 6.3).


Фиг. 6.3. Диаграмма, иллю­стрирующая число различных возможностей получения 0, 1, 2 и 3 выпадений «орла» в серии из трех испытаний.

 

Ясно, что эту диаграмму можно продолжить, если мы инте­ресуемся еще большим числом испытаний. На фиг. 6.4 приведена аналогичная диаграмма для шести испытаний.


Фиг. 6.4. Диаграмма, подобная изображенной на фиг. 6.3, для серии из шести испытаний.

 

Число «спо­собов», соответствующих каждой точке диаграммы,— это про­сто число различных «путей» (т. е., попросту говоря, последо­вательность выпадения «орла» и «решки»), которыми можно прийти в эту точку из начальной, не возвращаясь при этом назад, а высота этой точки дает общее число выпадений «орла». Этот набор чисел известен под названием треугольника Паскаля, а сами числа называются биномиальными коэффициентами, поскольку они появляются при разложении выражения +b)n, Обычно эти числа на нашей диаграмме обозначаются символом

( ), или Сnk (число сочетаний из n по k), где n— полное число

испытаний, а k — число выпадений «орла». Отмечу попутно, что биномиальные коэффициенты можно вычислять по формуле

(6.4)

 

где символ п!, называемый «n-факториалом», обозначает про­изведение всех целых чисел от 1 до n, т. е. 1 • 2 • 3 . . . (n-1)•п. Теперь уже все готово для того, чтобы с помощью выражения (6.1) подсчитать вероятность Р (k, n) выпадения k раз «орла»! в серии из nиспытаний. Полное число всех возможностей бу­дет 2" (поскольку в каждом испытании возможны два исхода), а число равновероятных комбинаций, в которых выпадет «орел», будет ( ) , так что

(6.5)

Поскольку Р (k, n)доля тех серий испытаний, в кото­рых выпадение «орла» ожидается k раз, то из ста серий k вы­падений «орла» ожидается 100 Р (k, n) раз. Пунктирная кривая на фиг. 6.2 проведена как раз через точки функции 100 Р (k, 30). Видите, мы ожидали получить 15 выпадений «орла» в 14 или 15 сериях испытаний, а получили только в 13. Мы ожидали полу­чить 16 выпадений «орла» в 13 или 14 сериях испытаний, а по­лучили в 16. Но такие флуктуации вполне допускаются «пра­вилами игры».

Использованный здесь метод можно применять и в более об­щей ситуации, где в каждом единичном испытании возможны только два исхода, которые давайте обозначим через В (выигрыш) и П (проигрыш). Вообще говоря, вероятности В и П в каждом отдельном испытании могут быть разными. Пусть р, например, будет вероятностью результата В. Тогда q (вероятность резуль­тата П) должна быть равна (1-р). В серии из nиспытаний вероятность того, что результат В получится k раз, равна

(6.6)

Эта функция вероятностей называется биномиальным законом распределения вероятности.



Дата добавления: 2022-05-27; просмотров: 47;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.016 сек.