ВЗАИМОДЕЙСТВИЕ НЕАЛЛЕЛЬНЫХ ГЕНОВ


Если несколько генов определяют одно свойство организма (окраску цветка, длину шерсти и др.), то они взаимодействуют друг с другом. При этом в потомстве дигетерозиготы может наблюдаться необычное расщепление - 9:3:4; 9:7; 9:6:1; 13:3; 12:3:1; 15:1. Генетический анализ показывает, что необычные расщепления по фенотипу в F2 представляют видоизменение общей менделевской формулы 9:3:3:1. Известны случаи вза­имодействия трех и большего числа генов с изменением обыч­ных формул расщепления.

Наиболее часто встречаются 3 формы взаимодействия неаллельных генов: кооперация, комплементарность, эпистаз и полимерия.

Комплементарность — явление, когда признак развивается только при взаимном действии двух доминантных неаллельных генов, каждый из которых в отдельности не вызывает развитие признака.

Эпистаз — явление, когда один ген (как доминантный, так и рецессивный) подавляет действие другого (неаллельного) гена (как доминантного, так и рецессивного). Ген-подавитель (супрессор) может быть доминантным (доминантный эпистаз) или рецессивным (рецессивный эпистаз).

Полимерия — явление, когда несколько неаллельных доминантных генов отвечают за сходное воздействие на развитие одного и того же признака. Чем больше таких генов присутствуют в генотипе, тем ярче проявляется признак. Явление полимерии наблюдается при наследовании количественных признаков (цвет кожи, вес тела, удойность коров).

В противоположность полимерии наблюдается такое явление, как плейотропия — множественное действие гена, когда один ген отвечает за развитие нескольких признаков.

Комплементарность. Комплементарными или дополнитель­ными называют такие доминантные гены, которые при совместном нахождении в генотипе (А-В-) обусловливают развитие нового признака по сравнению с действием каждого гена, в отдельности (A-bb или ааВ-).

Расщепление 9:3:3:1.Так, у дрозофилы встречается коричневая и ярко-красная окраска глаз. Обе эти окраски ре­цессивны к красной окраске (дикий тип). При скрещивании мух с коричневыми и ярко-красными глазами гибриды F1 оказы­ваются красноглазыми, а в F2 наблюдается расщепление на 4 фенотипических класса в отношении 9/16 красные : 3/16- ярко-красные: 3/16 коричневые и 1/16 белые (рис. 2).

Отличие исходных форм по одной паре признаков могло бы свидетельствовать о моногенных различиях между ними. Од­нако в F1 вместо доминирования одного из признаков появ­ляется новое качество - красная окраска, а в F2 осуще­ствляется дигибридное расщепление с тем лишь отличием от менделевского, что оно идет по одному, а не по двум свойствам (только окраска глаз). При этом здесь проявляется еще один новый признак - белый цвет глаз. Таким образом, генетический анализ свидетельствует о том, что в этом скрещивании участвуют не одна, а две пары генов.

Рисунок 2. Наследование окраски глаз у дрозофилы (комплементарность). Окраска глаз: а —ярко-красная; в —коричневая.

 

Мы можем сделать вывод, что гены А и В вместе определяют красную окраску глаз дикого типа, а - ярко-красную, в - ко­ричневую. Тогда генотип мух с коричневыми глазами можно обозначить AAbb, с ярко-красными — ааВВ, генотип красногла­зых гибридов — АаВb и белоглазых мух aabb. Фенотипические радикалы полученных в F2 классов могут быть представлены как 9 А-В-, 3 ааВ-, 3 A-bb, 1 aabb.

Биохимический анализ глазных пигментов показал, что крас­ная окраска глаз обеспечивается тремя видами пигментов: ярко-красным, коричневым и желтым.

Рецессивный ген а блокирует образование коричневого пигмента, вследствие чего разви­ваются ярко-красные глаза, другой рецессивный ген — b блоки­рует одновременно образование красного и желтого пигментов, и поэтому образуется только коричневый пигмент. В F1 объеди­няются доминантные аллели этих генов, и поэтому синтези­руются все пигменты, дающие в совокупности красную окраску глаз. Белоглазые мухи, появляющиеся в F2, являются результа­том одновременного блокирования синтеза всех трех пигментов.

Аналогичное наследование встречается и у растений. На­пример, окраска плодов у томатов (Lycopersicon esculeritum) обусловливается каротиновыми пигментами, имеющими огром­ное значение в синтезе витаминов. Генетический анализ показы­вает, что красная окраска плодов определяется взаимодей­ствием комплементарных доминантных генов R и Т, оранжевые плоды образуются на растениях с генотипом R-tt, желтые — с генотипом rrТ-, промежуточные желто-оранжевые — rrtt. Здесь также расщепление в F2 соответствует генетической формуле дигибридного скрещивания 9:3:3: 1.

Таким образом, в случае, когда каждый из двух рецес­сивных неаллеальных генов проявляет самостоятельный фенотипический эффект, расщепление в F2 по фенотипу соответствует менделевскому отношению 9:3:3:1, так как каждый из четырех классов имеет свой особый фенотип.

Расщепление 9:7. Если же рецессивные аллели дают одинаковый фенотипический эффект, характер расщепления меняется. Например, у белого клевера (Trifolium repens) имеются формы с высоким и низким содержанием цианида. При скрещивании их в F1 доминирует первое свойство, а в F2 наб­людается расщепление, близкое к отношению 3:1. Следова­тельно, эти альтернативные признаки определяются одной парой аллелей. Но иногда при скрещивании двух растений клевера с низким содержанием цианида гибриды F1 имеют много циа­нида, а в F2 расщепление оказывается близким к отношению 9/16 с высоким содержанием цианида и 7/16 — с низким.

Чтобы выяснить, укладывается ли это расщепление в схему дигибридного менделевского расщепления, представим, что у каждой исходной расы клевера имеется в гомозиготном состоянии лишь по одной из доминантных аллелей (LLhh или llHH), которые при взаимодействии определяют развитие циа­нида. Поскольку у гибрида первого поколения F1: присутствуют доминантные аллели обоих генов L-H-, в его листьях будет много цианида. В F2 : происходит расщепление в отношении 9/16 L-H-: 3/16 L-hh : 3/16 llН-: 1/16 llhh. Каждый из доминантных генов самостоятельно не может обусловить выработку большого количества цианида, поэтому у растений с генотипами L-hh и llН — мало цианида, и в F2 наблюдается расщепление по фено­типу в отношении 9 : 7.

Генетический анализ нашел подтверждение в биохимическом анализе. Оказалось, что цианид в листьях клевера обра­зуется из глюкозида линамарина под действием фермента линамаразы. Химический анализ листьев клевера разных генотипов проливает свет на характер взаимодействия этих двух пар ге­нов. Экстракт растений L-H- в норме содержит цианид. Дли того чтобы цианид образовался в листьях растений L-hh, необходимо добавить линамаразу, а в 11Н- линамарин. В растениях же llhh при добавлении любого компонента цианид не образуется. Следовательно, мы можем сделать вывод, что ген L обеспечивает образование линамарина, а ген H вырабаты­вает фермент линамаразу, превращающий линамарин в цианид. Переход гена L в рецессивное состояние l прерывает реакцию образования линамарина, а ген h блокирует образование фер­мента. Таким образом, в данном случае совместный генетиче­ский и биохимический анализы дают представление о меха­низме взаимодействия генов (табл. 2).

Таблица 2

Образование цианида экстрактами растений клевера разных генотипов

Что исследуется Генотип Только экстракт Экстракт + Линамарин Экстракт + линамараза
L-H- L-hh 11Н llhh + + + + +

 

Подобный тип взаимодействия генов, дающий в F2 расщеп­ление 9:7, найден у многих растений, животных и человека. Так, например, наследуется пурпурная и белая окраска цветка у душистого горошка (Lathyrus odoratus), желтая и белая окраска коконов у шелкопряда, нормальный слух и глухота у человека и т. п.

Расщепление в F2 по фенотипу 9 : 7 есть видоизменение рас­щепления 9:3:3:1, определяемое тем, что и доминантные и рецессивные гены не имеют самостоятельного фенотипического проявления.

Расщепление 9:3:4. До сих пор были рассмотрены примеры комплементарного взаимодействия, при котором каж­дый из доминантных генов в отдельности не обладал способно­стью вызвать развитие признака. Известны, однако, случаи, когда оба доминантных комплементарных гена характери­зуются самостоятельным проявлением. В соответствии с этим меняется и характер расщепления в F2. Рассмотрим наследова­ние трех типов окраски шерсти у кроликов (Lepus cuninculus) — дикой рыжевато-серой (агути), черной и белой. Окраска дикого типа зависит от наличия гена, распределяющего пигмент по длине волоса. Каждая шерстинка у кроликов агути имеет посе­редине желтое кольцо, а в основании и на конце — черный пиг­мент. Такое зонарное распределение пигментов и создает окра­ску агути, свойственную всем диким грызунам.

У черных кроликов шерстинки по всей длине окрашены равномерно в черный цвет. Белые кролики с красной радужной оболочкой глаз (альбиносы) вовсе лишены пигмента.

Рисунок 3. Наследование окраски шер­сти у кроликов (комплементарность). Окрас шерсти: А – окрашенность; а - альби­низм; В - зонарная (агути); b - черная.

 

При скрещивании черных кроликов с белыми все гибриды оказываются агути, а в F2 наблюдается расщепление в отно­шении 9/16 агути: 3/16 черных: 4/16 белых (рис. 3). Если прове­сти анализ этого скрещивания в начале по наличию и отсут­ствию пигмента, не обращая внимания на его качество, то мо­жно прийти к выводу, что окрашенность доминирует над неокрашенностью, а в F2 наблюдается расщепление на 12 окра­шенных (9 + 3) и 4 белых, т. е. 3: 1. В то же время в F2 осуще­ствляется расщепление на 9 агути и 3 черных (3: 1). Гены мо­жно обозначить следующим образом: А - наличие окраски, а - отсутствие ее, В - окраска агути, b - черная. Тогда исход­ные кролики-альбиносы являются, очевидно, гомозиготными по рецессивному гену отсутствия окраски и доминантному гену агути (ааВВ), а черные кролики - гомозиготными по доминант­ному гену наличия окраски и рецессивному гену черной окраски (ААbb). У гибридов F1 (АаВb) вследствие взаимодействия до­минантных аллелей обоих генов развивается окраска типа агути. Такая же окраска характерна и для 9/16 особей в F2 с геноти­пом А-В-. Черными в F2 оказываются кролики, имеющие генотип A-bb, а белыми — все остальные (ааВ- и aabb) в силу отсут­ствия у них гена А, определяющего образование пигмента. Ген В в отсутствии гена А не проявляется.

Подобный тип наследования широко распространен в при­роде. Например, у ржи (Secale cereale) скрещивание белозер­ных растений с желтозерными дает в F1 только зеленую окраску зерна, а в F2 расщепление в отношении 9 зеленых: 3 желтых: 4 белых [9:3: (3+1)]. Анало­гично наследуется белая, красная и чалая масти у крупного рогатого скота и т. п.

Расщепление 9:6:1. В ряде случаев комплементарные гены, способные к самостоятельному проявле­нию, при отсутствии дополнительного гена могут давать каждый в отдельности сходный фенотипический эффект. Характер рас­щепления дигетерозиготы в F2 при этом также изменяется. Так, у тыквы (Cucurbita pepo) имеются сорта с разной формой плода: сферической, дисковидной и удлиненной (рис. 4). Сферическая форма плода является рецессивной но отношению к дисковид­ной. От скрещивания растений с плодами сферической формы, но имеющих разное происхождение, получаются гибридные растения, дающие дисковидные плоды. В потомстве у этих рас­тений в F2 появляются три фенотипических класса в отноше­нии: 9/16 с дисковидными плодами, 6/16 — со сферическими и 1/16 — с удлиненными. Нетрудно понять, что и здесь имеет место взаимодействие двух генов, определяющих форму плода. Каж­дый из доминантных комплементарных генов обусловливает развитие плодов сферической формы, а их взаимодействие приводит к образованию дисковидных плодов. Взаимодействие рецессивных аллелей этих генов определяет развитие плодов удлиненной формы. Таким образом, и здесь видоизменяется обычное дигибридное расщепление [9: (3 + 3):1].

Подобный тип взаимодействия на­блюдается в наследовании окраски щетины у свиней (Sus scrofa). При скрещивании двух разных пород с пе­сочной окраской в F1 появляется красная окраска, а в F2 рас­щепление на 9 красных, 6 песочных и 1 белую.

1/16

Рисунок 4. Наследование формы плода у тыквы (комплементарность).

 

Рассматривая примеры комплементарного действия генов, можно убедиться, что оно иногда приводит к развитию у гибри­дов признаков, несвойственных исходным формам, т. е. к но­вообразованиям. Зачастую эти «новообразования» являются признаками, свойственными диким предкам данных видов, напри­мер окраска агути у кроликов и т. п. У диких предков домаш­них животных и растений доминантные гены комплементарного действия поддерживались естественным отбором вместе в од­ном генотипе. При одомашнивании с помощью скрещиваний и искусственного отбора комплементарные гены разобщились. Генотип АаВb разлагался селекционерами на генотипы AAbb и ааВВ. Поэтому при скрещивании и наблюдается иногда как бы возврат к признакам диких предков.

Эпистаз. При доминировании действие одной аллели подав­ляются другой аллелью этого же гена: А>а, В>b и т. д. Но существует взаимодействие, при котором один ген подавляет действие другого, например А>В или B>A, а>В или b>А и т. д.

Такое явление называется эпистазом. Гены, подавляющие действие других генов, называются супрессорами или ингиби­торами. Они могут быть как доминантными, так и рецессив­ными. Гены-супрессоры известны у животных, растений и ми­кроорганизмов. Обычно они обозначаются I или S.

Эпистаз принято делить на два типа: доминантный и рецес­сивный.

Под доминантным эпистазом понимают подавление одним доминантным геном действия другого гена.

Расщепление 13:3.Из многих примеров доминантного эпистаза приведем лишь некоторые. Так, у льна (Linura usitatissimum) наряду с формами, имеющими нормальные лепе­стки, встречаются растения с гофрированными лепестками. При скрещивании двух форм с нормальными лепестками, имеющих разное происхождение, в F1 все гибриды имеют нормальные лепестки, а в F2 получается расщепление: 13/16 растений с нор­мальными лепестками и 3/16 - с гофрированными. Характер расщепления свидетельствует о том, что форма лепестков оп­ределяется двумя парами генов. В таком случае одно из исход­ных растений должно нести в скрытом состоянии ген гофрированности лепестков, действие которого подавлено ингибитором. Следовательно, у растений этого генотипа нормальная форма лепестков определяется не особыми генами (нормальной формы лепестков), а геном - подавителем гофрированности.

Обозначим ген гофрированности лепестков - А, нормальной формы - а (это основные гены формы лепестков), ингибитор гофрированности - I, ген отсутствия подавления - i. Тогда ис­ходные формы с нормальными лепестками будут иметь гено­типы IIАА и iiaа, гибриды F1 IiАа — также нормальные, а рас­щепление в F2 13/16 нормальных: 3/16 гофрированных можно представить как 9 (I-A-)+3 (I-аа) +1 (iiaa) = 13 нормальных и 3 iiA - гофрированных. Таким образом, подавление действия доминантного гена гофрированности лепестков доминантной аллелью другого гена (подавителя) обусловливает в F2 рас­щепление по фенотипу в отношении 13:3 [(9 + 3+1): 3].

Этот тип взаимодействия широко распространен в природе и наблюдается в наследовании окрашенности и неокрашенности зерен у кукурузы и оперения у кур и т. п. На рисунке 5 изобра­жено наследование окраски луковицы у лука Allium сера.

Рисунок 5. Наследование окраски лукови­цы у Allium сера (эпистаз): А - наличие окраски; а - отсут­ствие окраски; I - подавитель ок­раски; i - окраска не подавляется.

 

Расщепление 12:3:1. Доминантный эпистаз может давать и другое расщепление в F2 по фенотипу, а именно 12 : 3 : 1 [(9 + 3) : 3 : 1]. В этом случае, в отличие от предыдущего, форма, гомозиготная по обоим рецессивным генам, имеет спе­цифический фенотип.

Например, некоторые собаки (Canis familiaris) с белой окраской шерсти при скрещивании с собаками, имеющими ко­ричневую окраску, дают в F1 щенков с белой окраской, а в F2 расщепление на 12/16 белых, 3/16 чер­ных и 1/16 коричневых (рис. 6). Если проанализировать это скрещи­вание отдельно по свойству окрашенности-неокрашенности и черно-коричневой окраске, то можно убедиться, что отсутствие окраски в F1 доминирует над ее наличием, а в F2 наблюдается расщепление 12:4, или 3:1. Расщепление на 3 черных и 1 коричневую свидетельствует о том, что черная окраска опреде­ляется доминантным геном, а ко­ричневая - рецессивным. Теперь можно обозначить ингибитор ок­раски - I, его отсутствие - i, чер­ную окраску - А, коричневую - а. Тогда легко представить генотипы исходных форм и гибридов. Подоб­ный тип эпистаза встречается в на­следовании окраски плодов у тык­вы, окраски шерсти у овец (Ovis aries) и во многих других случаях. Таким образом, гены-подавители обычно не определяют сами какой-либо качественной реакции в разви­тии данного признака, а лишь по­давляют действие других генов. Но в некоторых случаях это не так. Например, у хлопка (Gossypium) по окраске волокон в F2 наблюдается расщепление на 12 коричневых: 3 зеленых: 1 белую. Однако анализ коричневых волокон в ультрафиолето­вых лучах позволяет выделить два типа коробочек: 3, имеющих волокна только с коричневым пигментом, и 9 — с коричневым и зеленым. У растений последнего типа зеленая окраска опти­чески не видна, так как коричневый пигмент ее как бы подав­ляет, т. е. является ингибитором.

Рисунок 6. Наследование окраски шерсти у собак (эпистаз): А—черная окраска; а — ко­ричневая; I — подавляет ок­раску; i — не подавляет.

 

Под рецессивным эпистазом понимают такой тип взаимо­действия, когда рецессивная аллель одного гена, будучи в гомо­зиготном состоянии, не дает возможности проявиться доми­нантной или рецессивной аллели другого гена: аa>B- или aa>bb.

Расщепление 9:3:4 приводилось как пример комплемен­тарного взаимодействия генов. Но эти же случаи можно рас­сматривать и как рецессивный эпистаз.

При скрещивании черных кроликов (AAbb) с белыми (ааВВ) все гибриды (АаВb) имеют окраску типа агути, а в F2 9/16 крольчат оказываются агути (А-В-), 3/16 черных (A-bb) и 4/16 белых (ааВ- и aabb). Эти результаты можно объяснить, предположив, что имеет место рецессивный эпистаз типа аа>В- и aa>bb. При этом кролики генотипа ааВ- и aabb оказы­ваются белыми потому, что ген а в гомозиготном состоя­нии, блокируя образование пигмента, препятствует тем самым проявлению гена — распределителя пигмента В и гена черной окраски b.

Кроме описанных случаев одинарного рецессивного эпитаза, существуют и такие, когда рецессивная аллель каждого гена в гомозиготном состоянии одновременно реципрокно подавляет действие доминантной аллели комплементарного гена, т. е. аа эпистатирует над В-, bb над А-. Такое взаимодействие двух рецессивных подавителей называют двойным рецессивным эпи­стазом. В дигибридном скрещивании расщепление по фено­типу — 9 : 7, как и в случае комплементарного взаимодей­ствия генов.

Следовательно, одно и то же расщепление можно трактовать как результат и комплементарного взаимодействия, и эпистаза. Один генетический анализ наследования при взаимодействии генов без знания биохимии и физиологии развития признака в онтогенезе не может раскрыть природы этого взаимодействия. Но без генетического анализа нельзя понять механизм наследственной детерминации развития этих признаков.

Полимерия. Рассмотренные до сих пор типы взаимодействия сенов относились к альтернативным, т. е. качественно разли­чающимся, признакам.

Такие свойства организмов, как, например, темп роста и вес животного, длина стебля растения и т. п., нельзя разложить на четкие фенотипические классы; их необходимо измерять, взве­шивать, подсчитывать, т.е. оценивать количественно. Подобные признаки обычно называют количественными или мерными признаками. Если расположить, например, овец одной породы в порядке возрастания их веса, то между самым мелким и круп­ным животными будет серия незаметных переходов, образую­щих непрерывный ряд.

Наследование таких признаков может происходить по-разному. При одном варианте, признак формируется под действием аллелей одного гена, который может быть представлен разным числом их в генотипе. Например, содержание витамина А в эндосперме зерна кукурузы зависит от количества доминантных аллелей гена у. Как известно, клетки эндосперма содержат три набора хромосом. Следовательно, путем скрещивания можно получить четыре различных по генотипу эндосперма кукурузы, содержащих раз­ное количество доминантных и рецессивных аллелей у. Количе­ство витамина А (в единицах активности) при разных дозах одного и того же гена оказывается следующим:

В эндосперме генотипа у у у . . . 0,05

» » » Y у у . . . 2,25

» » » Y Y у . . . 5,00

» » » Y У У . . . 7,50

 

Как видно из приведенных данных, действие одной дозы доминантного гена Y соответствует примерно 2,25 - 2,50 единиц активности витамина А. С увеличением дозы гена его действие суммируется, или кумулируется.

Такой тип действия гена называют кумулятивным или адди­тивным, т. е. суммирующимся.

При другом варианте формирование количественного признака у организма, определяется взаимодействием многих доминант­ных генов, действующих на один и тот же признак или свой­ство. В этом случае количе­ственные признаки, могут образовывать по своему проявлению непре­рывный ряд. При этом, количественно варьирующий признак у разных особей одного и того же поколения будет определяться разным числом доминантных генов в генотипе. Так, при скре­щивании рас пшениц (Triticum) с красными и белыми (неокра­шенными) зернами шведский генетик Г. Нильсон-Эле в 1908 г. обнаружил в F2 обычное моногибридное расщепление в отно­шении 3:1.

Однако при скрещивании некоторых других линий пшениц, различающихся по таким же признакам, в F2 наблюдается рас­щепление в отношении 15/16 окрашенных : 1/16 белых. Окраска зерен из первой группы варьирует от темно- до бледно-красных (рис. 7).

Генетический анализ растений из семян F2 разных окрасок показал, что растения, выращенные из белых зерен и из зерен с наиболее темной (красной) окраской, в дальней­шем не дают расщепления. Из зерен с окраской промежуточ­ного типа развились растения, давшие в последующих поколениях расщепление по окраске зерна. Анализ характера расщеп­ления позволил установить, что в данном случае красную окраску зерен определяют доминантные аллели двух разных генов, а сочетание их рецессивных аллелей в гомозиготном со­стоянии определяет отсутствие окраски. Интенсивность окраски зерен зависит от числа доминантных генов в генотипе.

Рисунок 7. Наследование окраски зерна у пшеницы (полимерия)

 

Гены такого типа, одинаково влияющие на развитие одного признака, были названы генами с однозначным действием или полимерными. Такое же название получили и сами признаки. Поскольку эти гены однозначно влияют на один и тот же при­знак, было принято обозначать их одной латинской буквой с указанием номера разных генов: А1, А2, A3 и т. д. Этот тип взаимодействия генов получил название полимерии.

Следовательно, исходные родительские формы, давшие рас­щепление в F2: 15:1, имели генотипы А1А1А2А2 и а1а1а2а2. Гиб­рид F1: обладал генотипом Ala1A2a2, а в F2 появились зерна с разным числом доминантных генов. Наличие всех четырех доминантных аллелей A1A1A2A2 у 1/16 растений определяет са­мую интенсивную окраску зерна; 4/16 всех зерен имели три доминантных аллели (типа A1A1A2a2), 6/16 — две (типа A1a1A2a2), 4/16 — одну (типа A1a1a2a2), все эти генотипы опреде­ляли различные промежуточные окраски, переходные между интенсивно-красной и белой. Гомозиготной по обоим рецессив­ным генам (a1a1a2a2) являлась 1/16 всех зерен, и эти зерна ока­зались неокрашенными.

Нетрудно заметить, что частоты пяти перечисленных генотипических классов F2 распределяются в ряде: 1+4 + 6 + 4+1 = 16, который отображает изменчивость признака окраски зерна пшеницы в зависимости от числа доминантных аллелей в гено­типе. Аналогичный тип наследования известен для некото­рых видов окраски зерен кукурузы, колосковой чешуи у овса и т. п.

При накоплении доминантных полимерных генов их действие суммируется, т. е. они имеют кумулятивный эффект, поэтому взаимодействие такого типа называют кумулятивной поли­мерией.

Очевидно, что если у гибрида F1 число таких генов в гетеро­зиготном состоянии оказывается не два, а три А1а1А2a2А3а3 или более, то число комбинаций генотипов в F2 увеличивается. Этот ряд генотипов можно представить в виде биноминальной кривой изменчивости данного признака.

В опыте Нильсона-Эле тригибридное расщепление в F2 по генам окраски зерен пшеницы давало соотношение 63 красных к 1 неокрашенному. В F2: наблюдались все переходы от интен­сивной окраски зерен с генотипом A1A1A2A2A3A3 до полного ее отсутствия у a1a1a2a2a3a3. При этом частоты генотипов с разным количеством доминантных генов распределялись в следующий ряд: 1+6+15 + 20+15 + 6+1=64. На рисунке 8 приведены гистограммы распределения частот генотипов с разным числом до­минантных генов кумулятивного действия в моно-, ди-, три- и по­лигибридном скрещиваниях. Из этого сопоставления видно, что, чем большее число доминантных генов определяет данный при­знак, тем больше амплитуда из­менчивости и тем более плавны переходы между различными группами особей.

Полимерно наследуется, на­пример, пигментация кожи у че­ловека. При бракосочетании негра и белой женщины рождаются дети с промежуточным цветом кожи (мулаты). У отца и матери мулатов могут родиться дети всех типов кожи с окраской разных оттенков, от черной до белой, что определяется комбинацией двух пар полимерных генов.

Рисунок 8. Распределение частот генотипов в F2 в случае кумулятивной полимерии.

­

Таким образом, при изучении наследования перечисленных вы­ше признаков в F2 не наблю­дается расщепления на определенные, легко отличимые фенотипические классы, как это имеет место в случае альтернативных признаков: гладкая или морщи­нистая форма семян у гороха и т. д. Полимерные признаки, как правило, необходимо измерять или подсчитывать. Поэтому, в отличие от альтернативно наследующихся, так называемых качественных признаков, их называют количественными при­знаками. При наследовании таких признаков потомство гиб­рида по фенотипическому проявлению образует непрерыв­ный ряд.

В принципе деление признаков на количественные и каче­ственные условно. Как те, так и другие признаки можно и должно измерять при изучении их наследования, поскольку без количественной оценки любого явления природы не может быть объективного его анализа.

В качестве примера приведем результаты скрещивания двух форм кукурузы — длиннопочатковой и короткопочатковой. Как видно из рисунка 9, початки по их длине у исходных линий кукурузы № 60 (короткопочатковая) и № 54 (длиннопочатковая), а также у гибридов первого и второго поколений распре­деляются с определенной закономерностью. Нетрудно заметить, что эти две линии сильно различаются между собой, но в пре­делах каждой из них длина початков колеблется незначительно. Это указывает на то, что они наследственно сравнительно одно­родны. Захождения в размерах початков родительских форм нет. У гибридных растений F1 длина початков оказывается про­межуточной, с небольшой изменчивостью. В F2 размах изменчи­вости значительно увеличивается. Следовательно, непрерывный ряд изменений по длине початка кукурузы можно представить как ряд генотипов с различным числом доминантных генов, обусловливающих данный количественный признак.

Тот факт, что при небольшом числе исследованных растений второго поколения у некоторых из них воспроизводится длина початков, свойственная родительским формам, может указывать на участие небольшого числа полимерных генов в определении длины початка у скрещиваемых форм. Такое предположение вытекает из известной нам формулы 4n , определяющей число возможных комбинаций гамет, образующих зиготы в F2, в зави­симости от числа пар генов, по которым различались исходные родительские формы. Появление в опыте среди 221 растения F2 форм, сходных с родительскими, указывает на то, что число независимо наследующихся генов, определяющих длину по­чатка, не должно превышать трех (43 = 64) или четырех (44 = 256). Большая изменчивость признака указывает на его сложную генетическую обусловленность, а меньшая — на мень­шее число факторов, его определяющих.

Приведенные примеры анализа наследования количествен­ных признаков иллюстрируют лишь один из возможных путей их изучения. Другой путь — применение математических мето­дов. Анализ наследования количественных признаков и действия полимерных генов чрезвычайно сложен.

Рисунок 9. Наследование длины початков (в см) у кукурузы (полимерия).

 

Изучение полимерных генов имеет не только теоретический, но и большой практический интерес. Хозяйственно ценные при­знаки у животных и растений, такие, как жирномолочность ко­ров, яйценоскость кур, длина колоса пшеницы, содержание сахара в корнеплодах свеклы и многие другие, наследуются по типу полимерии.

Проявление полимерных признаков в очень большой степени определяется условиями развития организма. Так, молочная продуктивность коров, длина шерсти овец, скорость роста сви­ней во многом зависят от условий кормления и содержания животных. Величина клубней картофеля, початков кукурузы или длина стебля льна определяются в значительной мере ка­чеством вносимых удобрений, количеством осадков и т. п.

Некумулятивная полимерия. Полимерные гены с однозначным действием могут определять и качественные, т. е. альтернативные, признаки. Примером может служить наследование оперенности ног у кур (Gallus gallus). От скрещи­вания пород, имеющих оперенные и неоперенные ноги, в F1 по­являются цыплята с оперенными ногами. Во втором поколении происходит расщепление по фенотипу,в отношении 15/16 с опе­ренными ногами и 1/16 с неоперенными, т. е. наблюдается два фенотипичееких класса (рис. 10),

Очевидно, порода с оперенными ногами гомозиготна по двум парам однозначных доминантных генов (A1A1A2A2), а с неоперенными — имеет генотип а1а1а2а2. Сочетание гамет при оплодотворении дает гибриды с генотипом А1а1А2а2. Доми­нантные аллели каждого из двух генов действуют качественно однозначно, т. е. определяют оперенность ног. Поэтому гено­типы А12- (9/16), A1-a2a2 (3/16) и a1a1A2-(3/16) соответствуют фенотипу с оперенными ногами, а генотип а1а1а2а2 (1/16) с неопе­ренными.

Таким же образом осуществляется наследование формы стручка у пастушьей сумки (Capsella bursa pastoris). При скре­щивании расы, имеющей яйцевидные стручки, с расой, у кото­рой плоды треугольной формы, в F1 все растения имеют тре­угольные стручки, а в F2 наблюдается расщепление в отноше­нии 15: 1 [(9+3 + 3) : 1].

В двух приведенных примерах наличие в генотипе разного количества доминантных полимерных генов однозначного дей­ствия не изменяет выраженности признака. Достаточно одной доминантной аллели любого из двух генов, чтобы вызвать раз­витие признака. Поэтому такой тип взаимодействия генов был назван некумулятивной полимерией.

Рисунок 10. Наследование оперенности ног у кур (полимерия): А - оперенные ноги, а - неоперенные.

 

Все рассмотренные типы взаимодействия генов: комплементарное, эпистатическое и полимерное видоизменяют классическую формулу расщепления по фенотипу (9: 3: 3 : 1), установленную Менделем для дигибридного скрещивания. В таблице 6 приведены некоторые типы расщепления по фенотипу для дигибридного скрещивания, при этом все они показаны с точки зрения доминантного и рецессивного эпистаза.

Таблица 6

Соотношение фенотипичееких классов расщепления в потомстве дигетерозиготы при некоторых типах взаимодействия генов

Все приведенные типы расщепления по фенотипу столь же закономерны, как 9:3:3: 1; они являются не следствием нару­шения генетического механизма расщепления, а результатом взаимодействия генов между собой в индивидуальном развитии.

Модифицирующее действие генов. При изучении явления взаимодействия были открыты гены основного действия, т. е. такие, которые определяют развитие признака или свойства, например выработку пигментов, форму цветка и т. п., и такие, которые сами по себе не определяют какую-либо качественную реакцию или признак, а лишь усиливают или ослабляют про­явление действия основного гена. Это гены-модификаторы, а их действие — модифицирующее.

Одни из генов-модификаторов могут усиливать эффект основного гена, другие ослаблять. Например, у крупного рога­того скота пегая окраска шерстного покрова определяется ре­цессивным геном и двумя модификаторами, ослабляющими или усиливающими эффект основного гена пегости (рис. 11). Неза­висимо от наличия или отсутствия модификаторов, при скре­щивании животного, имеющего сплошную окраску, с пегим в F1 будет доминировать сплошная окраска, а в F2 — осуществляться расщепление 3:1. Действие модификаторов обнаруживается в присутствии гена пегости и проявляется в увеличении или уменьшении непигментированных участков шерстного покрова.

Рисунок 11. Модификация пегости у крупного рогатого скота: 1—усиленная пегость; 2 — пегость; 3 — ослабленная пегость.

 



Дата добавления: 2017-06-13; просмотров: 5157;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.037 сек.