Dummy – переменные, фиктивные переменные


 

Как правило, независимые переменные в регрессионных моделях имеют непрерывные области распределения. Однако некоторые переменные могут иметь всего два или дискретное множество значений, например: пол, уровень образования, рейтинг, оценка и т.д.

Например: рассмотрим в качестве зависимой переменной – заработная плата, а - набор объясняющих переменных.

Хотим в модель включить новую бинарную переменную, отвечающую за наличие или отсутствие высшего образования. Тогда необходимо включить в модель новую переменную d (d=1, если t-ый рабочий имеет высшее образование; d=0, если не имеет)

и рассмотреть новую модель

Тогда средняя заработная плата для людей без высшего образования = ; с высшим образованием =

Т.е. коэффициент интерпретируется как среднее изменение з/п при переходе из одной категории в другую при неизменных остальных параметрах. Т.е. люди с высшим образованием получают на рублей больше. Если коэффициент перед незначим, т.е. его р>0,05, то различий в з/п между категориями нет.

Замечание: качественное различие можно формализовать с помощью любой переменной, принимающей два значения, а не обязательно 0 и1. Но тогда интегрируемость коэффициента усложняется.

Замечание: если включающаяся в модель dummy переменная имеет не два, а несколько значений, то в принципе можно было бы ввести дискретную переменную, принимающую такое же количество значений, но тогда, во-первых, затрудняется интерпретация, во-вторых, подразумевается одинаковое различие между состояниями признака. Поэтому вводят несколько бинарных переменных.

Пример: пусть оценивается стоимость мобильного телефона. В качестве дискретного признака выступает вид телефона:

Вводятся 4 бинарных переменных

, если телефон обычный; , в остальных случаях

, если телефон слим; , в остальных случаях

, если телефон раскладушка; , в остальных случаях

, если телефон вертушка; , в остальных случаях

 

Мы не включили в модель , т.к. тогда для любой строки выполнялось бы , т.е. регрессоры были бы линейно зависимы, т.е. мы не смогли бы получить МНК-оценку параметров, т.к. не смогли бы обратить матрицу.

Интерпретация коэффициентов:

Средняя стоимость телефона слим: , раскладушка: , вертушка:

Замечание: если рассматривается ситуация, когда бинарная переменная описывает не все возможные варианты, то в модель включаются все переменные.

Пример: если рассматривается вторичный рынок квартир в Москве, то зависимая переменная – это стоимость 1 кв.м. В качестве одного из факторов используют количество комнат и включают в модель 4 новые переменные следующего вида:

, если одна комната; , если нет

, если две комнаты; , если нет

, если три комнаты; , если нет

, если четыре комнаты; , если нет

 

В модель включаются все 4 переменные, т.к. в базе данных по квартирам присутствуют и многокомнатные квартиры, т.е. больше четырех комнат.

 

Прогнозирование

 

После построения регрессионного уравнения и оценки значимости ее коэффициентов, можно получить предсказанное значение результата с помощью точного прогноза при заданном значении фактора . Для этого в полученное уравнение регрессии надо подставить факторы , после чего получить прогноз. Это так называемый точечный прогноз, но он не дает требуемых представлений, и мало применим на практике. Поэтому дополнительно необходимо осуществить определение стандартной ошибки прогнозирования и получить интервальную оценку прогнозного значения.

Чтобы построить интервальный прогноз, необходимо найти верхнюю и нижнюю границы. Найдем сначала формулу стандартной ошибки прогнозирования . Вставим в формулу линейной регрессии значение параметра . Тогда уравнение регрессии имеет следующий вид:

Из этой формулы следует, что стандартная ошибка прогнозирования зависит от ошибки y-среднее и ошибки коэффициента регрессии b. Тогда

, если - неизвестна, то ее заменяют на оценку дисперсии

Учитывая ошибку регрессии ,получаем следующую формулу для прогноза:

Тогда интервальный прогноз или доверительный интервал прогнозируемого значения рассчитывается следующим образом:

, где -предельная ошибка прогноза

- кванти с уровнем доверия

Например: =0,95, то истинное значение попадет в доверительный интервал с вероятностью 0,95

Строя прогноз, мы хотим получить как можно более точный прогноз и как можно меньший интервал (узкий), но чем выше , тем дальше друг от друга границы интервала и наоборот. Поэтому приходится искать компромисс. Часто в задачах задано заказчиками исследования. Поэтому, строя модель, мы должны помнить, что хорошая модель – это та, интервальные прогнозы, по которой достаточно точные и границы не слишком далеко друг от друга, а сам интервал неширокий.

Замечание: если построенная по выборке модель имеет высокий , все оценки значимы, остатки близки к нормальным, но прогнозы неточные, широкие интервалы прогнозирования (плохая прогностическая способность модели), то, возможно, вы просто подогнали модель под данные и она не подходит, т.е. ее надо переделать, т.е. прогнозирование можно использовать в качестве оценки качества модели.

 



Дата добавления: 2022-05-27; просмотров: 140;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.011 сек.