Регистры, срабатывающие по уровню


Параллельные регистры, срабатывающие по уровню стробирующего сигнала (или, как их еще называют, регистры-защелки, английское "Latch"), можно рассматривать как некий гибрид между буфером и регистром. Когда сигнал на стробирующем входе - единичный, такой регистр пропускает через себя входные информационные сигналы, а когда стробирующий сигнал становится равен нулю, регистр переходит в режим хранения последнего из пропущенных значений входных сигналов.

Применение таких регистров сильно ограничено, хотя иногда они довольно удобны. В некоторых схемах они могут успешно заменять регистры, срабатывающие по фронту, а в других схемах их применение вместо регистров, срабатывающих по фронту, недопустимо.

В стандартных сериях регистры, срабатывающие по уровню, представлены гораздо меньше, чем регистры, срабатывающие по фронту. На рис. 8.10 показаны в качестве примеров две микросхемы 4-разрядного регистра ТМ7 и 8-разрядного регистра ИР22. Стробирующие входы С нередко на схемах обозначают E (от английского "Enable" - "разрешение"), для того чтобы не путать их с тактовыми входами D-триггеров.

Рис. 8.10. Регистры, срабатывающие по уровню

Микросхему ТМ7 (и близкую к ней ТМ5) часто называют набором триггеров, но ее можно рассматривать и как регистр. Микросхема состоит из четырех триггеров, стробирующие входы которых С соединены попарно, то есть можно говорить о двух двухразрядных регистрах-защелках. Входы С1 и С2 микросхемы управляют каждый двумя разрядами данных. Все триггеры имеют как прямые, так и инверсные выходы, что иногда очень удобно.

При единице на входе С выходные сигналы повторяют входные, то есть регистр работает как обычный буфер с прямыми и инверсными выходами. При нуле на входе С на выходе регистра постоянно хранится та входная информация, которая была в момент прихода отрицательного фронта сигнала С. Однако говорить, что регистр ТМ7 срабатывает по отрицательному фронту сигнала С, неверно, так как информация на выходе меняется не только по этому фронту, но и в момент изменения входных сигналов при С = 1.

Регистр ИР22 отличается от ТМ7 тем, что имеет выходы с тремя состояниями (и соответственно, вход разрешения всех выходов –EZ) и тем, что всеми восемью разрядами управляет один стробирующий сигнал С. Суть работы от этого не изменяется. При единице на входе С регистр работает как буфер-повторитель, а при нуле на входе С - хранит ту информацию, которая была на входе в момент отрицательного фронта сигнала С. Выходы у регистра ИР22 - только прямые. Как и все регистры с тремя состояниями выхода, ИР22 имеет повышенную нагрузочную способность.

Величины задержек триггеров, срабатывающих по уровню, в 1,5–2 раза превышают задержки D-триггеров. Для правильной работы микросхем положительный импульс на входе С не должен быть слишком коротким, а задержка между изменением информации на входе D и отрицательным фронтом сигнала С не должна быть слишком малой. Информация на входе D не должна слишком быстро сниматься после отрицательного фронта сигнала С.

Основное применение регистра, срабатывающего по уровню стробирующего сигнала, состоит в запоминании на какое-то заданное время входного кода, причем в остальное время выходной код регистра должен повторять входной ( рис. 8.11). Стробирующий сигнал С в этом случае должен быть отрицательным на все время запоминания, и запоминаться будет входной код регистра в момент отрицательного (переднего) фронта сигнала С. Подобная функция бывает, например, необходима при построении устройств сопряжения для компьютеров. Регистр, по сути, продлевает во времени необходимое значение входного кода, в остальное время работая как повторитель.

Рис. 8.11. Продление длительности входного кода с помощью регистра-защелки

В ряде случаев регистры данного типа могут успешно заменять регистры, срабатывающие по фронту. Например, такая замена возможна в случае необходимости запоминания входного кода по сигналу С до момента прихода следующего сигнала С (рис. 8.12).

Сигнал С в данном случае должен быть коротким положительным импульсом, причем он обязательно должен быть "вложен" в запоминаемый входной код, то есть начинаться после начала (момента установления) кода, а заканчиваться до конца (момента снятия) кода (это так называемый вложенный цикл). По переднему фронту сигнала С регистр перейдет в режим пропускания входного кода, а по заднему - в режим его хранения. Поэтому записываемый код на выходе регистра появится по положительному фронту сигнала С, то есть точно так же, как и в случае регистра, срабатывающего по фронту.

Рис. 8.12. Использование регистра-защелки для замены регистра, срабатывающего по фронту

Сдвиговые регистры

Регистры сдвига или сдвиговые регистры (англ. shift register) представляют собой, как уже отмечалось, последовательно соединенную цепочку триггеров. Основной режим их работы - это сдвиг разрядов кода, записанного в эти триггеры, То есть по тактовому сигналу содержимое каждого предыдущего триггера переписывается в следующий по порядку в цепочке триггер. Код, хранящийся в регистре, с каждым тактом сдвигается на один разряд в сторону старших разрядов или в сторону младших разрядов, что и дало название регистрам данного типа.

В связи с названием направления сдвига в сдвиговых регистрах часто возникает путаница. Сдвиг бывает двух видов: вправо (основной режим, который есть у всех сдвиговых регистров) и влево (этот режим есть только у некоторых, реверсивных сдвиговых регистров). Названия эти отражают внутреннюю структуру регистров сдвига (рис. 8.14) и перезапись сигналов последовательно по цепочке триггеров. При этом триггеры, вполне естественно, нумеруются слева направо, например, от 0 до 7 (или от 1 до 8) для 8-разрядных регистров. В результате сдвиг информации регистром вправо представляет собой сдвиг в сторону разрядов, имеющих большие номера, а сдвиг информации регистром влево - это сдвиг в сторону разрядов, имеющих меньшие номера.

Однако, как известно, в любом двоичном числе слева расположены старшие разряды, а справа - младшие разряды. Поэтому сдвиг двоичного числа вправо будет сдвигом в сторону младших разрядов, а сдвиг влево - сдвигом в сторону старших разрядов. Это противоречие, не чей-то злой умысел, просто так исторически сложилось, и об этом надо помнить разработчику цифровой аппаратуры.

Рис. 8.14. Направление сдвига в сдвиговых регистрах

В стандартные серии цифровых микросхем входит несколько типов сдвиговых регистров, отличающихся возможными режимами работы, режимами записи, чтения и сдвига, а также типом выходных каскадов (2С или 3С). Большинство регистров сдвига имеет восемь разрядов. На рис. 8.15 представлены для примера четыре типа микросхем регистров сдвига.

Регистр ИР8 - наиболее простой из регистров сдвига. Он представляет собой 8-разрядную линию задержки, то есть имеет только один информационный вход, на который подается последовательная сдвигаемая информация (точнее, два входа, объединенных по функции 2И), и восемь параллельных выходов. Сдвиг в сторону выходов со старшими номерами осуществляется по переднему фронту тактового сигнала С. Имеется также вход сброса –R, по нулевому сигналу на котором все выходы регистра сбрасываются в нуль.

Рис. 8.15. Сдвиговые регистры

Регистр ИР9 выполняет функцию, обратную регистру ИР8. Если ИР8 преобразует входную последовательную информацию в выходную параллельную, то регистр ИР9 преобразует входную параллельную информацию в выходную последовательную. Однако суть сдвига не меняется, просто в ИР9 все внутренние триггеры имеют выведенные параллельные входы, и только один, последний триггер имеет выход (причем как прямой, так и инверсный). Запись входного кода в регистр производится по нулевому сигналу на входе -WR. Сдвиг осуществляется по положительному фронту на одном из двух тактовых входов С1 и С2, объединенных по функции 2ИЛИ. Имеется также вход расширения DR, сигнал с которого в режиме сдвига перезаписывается в младший разряд сдвигового регистра.

Рис. 8.16. Соединение регистров ИР8 для увеличения разрядности

Как и все остальные сдвиговые регистры, ИР8 и ИР9 допускают каскадирование, то есть совместное включение для увеличения разрядности.

Регистр ИР13 соединяет в себе возможности регистров ИР8 и ИР9. Он имеет как восемь входов для параллельной записи, так и соответствующие им восемь выходов параллельной информации. Сдвиг осуществляется по положительному фронту тактового сигнала С, причем сдвиг возможен как в сторону старших разрядов (вправо), так и в сторону младших разрядов (влево).

Регистр ИР24 обеспечивает сдвиг информации в обоих направлениях. Имеются входы расширения DR и DL, а также выходы расширения Q0 и Q7, что позволяет легко наращивать разрядность.

Главное применение всех регистров сдвига состоит в преобразовании параллельного кода в последовательный, и наоборот. Такое преобразование используется, например, при передаче информации на большие расстояния (в информационных сетях), при записи информации на магнитные носители, при работе с телевизионными мониторами и с видеокамерами, а также во многих других случаях.

Для примера на рис. 8.19 показана простейшая схема передачи цифровой информации в последовательном коде по двум линиям: информационной и синхронизующей. Такая передача позволяет сократить количество соединительных проводов, а также упростить защиту передаваемых данных от действия внешних электромагнитных помех, правда, ценой снижения скорости передачи.

Рис. 8.19. Последовательная передача информации с помощью регистров сдвига

На передающем конце (слева на рисунке) с помощью сдвигового регистра ИР9 входной параллельный 8-разрядный код преобразуется в последовательность разрядов данных, следующих с частотой тактового сигнала. На приемном конце (справа на рисунке) с помощью сдвигового регистра ИР8 эта последовательность разрядов данных снова преобразуется в параллельный код. Оба регистра тактируются одним и тем же тактовым сигналом, который передается по линии связи параллельно с последовательностью данных. Для увеличения надежности передачи информационный сигнал дополнительно задерживается относительно фронта тактового сигнала с помощью цепочки из двух инверторов.

Первый бит последовательного входа (со входа 7 регистра ИР9) начинает передаваться с началом сигнала записи -Зап. Следующие разряды передаются с каждым следующим положительным фронтом тактового сигнала С. Последним передается сигнал со входа 0. В регистр ИР8 разряды последовательного кода записываются в том же самом порядке, в каком они были в регистре ИР9. По окончании передачи первый переданный сигнал данных окажется в разряде 7 шины данных регистра ИР8, а последний переданный сигнал данных - в разряде 0.

Следующее применение сдвиговых регистров состоит в организации всевозможных линий задержек, особенно имеющих значительное количество каскадов. С помощью сдвиговых регистров можно обеспечить задержку любого входного сигнала на целое число тактов. Правда, надо учитывать, что длительность входного сигнала (и любого его элемента) будет также передаваться по линии задержки с точностью до одного такта. Такие линии задержки могут применяться для сравнения нескольких последующих тактов входного сигнала, для выполнения арифметических операций с несколькими тактами входного сигнала и для других подобных целей. Работа линии задержки на регистре сдвига иллюстрируется рис. 8.20.

Рис. 8.20. Линия задержки входного сигнала на регистре сдвига

Сдвиговые регистры могут также использоваться для формирования импульсов заданной длительности, причем длительность импульса может задаваться управляющим кодом, то есть быть программно управляемой. На рис. 8.21 приведена возможная схема такого формирователя.

Рис. 8.21. Формирователь импульсов с длительностью, задаваемой управляющим кодом

В исходном состоянии (до прихода положительного фронта входного сигнала) триггер сброшен в нуль, на всех выходах регистра сдвига - нули, на инверсном выходе мультиплексора - единица. На мультиплексор подан управляющий код, определяющий длительность выходного сигнала. При поступлении положительного фронта входного сигнала триггер перебрасывается в единицу (начинается выходной сигнал), и этот единичный сигнал начинает последовательно сдвигаться регистром сдвига по каждому фронту тактового сигнала.

Пусть управляющий код равен 5. Тогда в тот момент, когда на выходе 5 сдвигового регистра появится единица, она будет передана на выход мультиплексора КП7 с инверсией. При этом нулевой сигнал на входе –R триггера сбросит триггер в нуль, то есть выходной сигнал закончится.

Таким образом, длительность выходного сигнала будет определяться управляющим кодом. Погрешность установки этой длительности равна одному периоду тактового сигнала и зависит от временного сдвига между фронтом входного сигнала и фронтом ближайшего к нему тактового импульса. Чем больше длительность выходного сигнала, тем меньше относительная погрешность установки его точности. Например, при управляющем коде 0 длительность выходного сигнала может быть от 0 до Т, где Т - период тактового сигнала. А при управляющем коде 7 длительность выходного сигнала будет от 7Т до 8Т. При этом мы не учитываем задержек триггера, сдвигового регистра и мультиплексора.

Сдвиговые регистры могут также использоваться для умножения и деления двоичных чисел на 2n, где n - целое число, большее нуля. Сдвиг двоичного числа вправо (в сторону младших разрядов) на один разряд равносилен делению на 2. Сдвиг двоичного числа влево (в сторону старших разрядов) на один разряд равносилен умножению на 2. Для того чтобы сдвиговый регистр умножал и делил двоичный код, надо всего лишь записать этот код в регистр и сдвинуть его нужное количество раз вправо или влево. Наиболее удобен для этого регистр ИР13. При этом необходимо, чтобы в освободившиеся разряды вдвигались нули, то есть на входы расширения DR и DL регистра надо подать нулевые сигналы.

Наконец, последнее применение сдвигового регистра, которое мы рассмотрим, - это генератор случайной последовательности сигналов или случайной последовательности кодов. Строго говоря, последовательности будут не полностью случайные, а квазислучайные, то есть будут периодически повторяться, но период этот довольно большой. Случайные последовательности сигналов и кодов широко применяются в тестирующей аппаратуре, в генераторах шума, в логических игровых устройствах.

Задача состоит в том, чтобы выходной сигнал или код менял свое состояние случайно (или почти случайно). Сигнал должен случайно переключаться из 0 в 1 и из 1 в 0, а код должен случайно принимать значения из диапазона от 0 до (2N–1), где N - число разрядов кода (например, от 0 до 255 при 8-разрядном коде). Псевдослучайные последовательности имеют то преимущество перед истинно случайными, что они - предсказуемые и периодические, но в этом же и их недостаток.

Структура генератора квазислучайной последовательности на сдвиговом регистре очень проста (рис. 8.22). Она представляет собой регистр сдвига с параллельными выходами (например, ИР8), несколько (минимум два) выходных сигналов которого объединены с помощью элемента Исключающее ИЛИ, с выхода которого сигнал подается на вход регистра, замыкая схему в кольцо. Схема тактируется сигналом с частотой fT.

Рис. 8.22. Структура генератора псевдослучайной последовательности

Выбор номеров разрядов для подключения обратной связи представляет собой непростую задачу, но существуют справочные таблицы, в которых они приведены. В любом случае одна из точек подключения - выход старшего разряда.

Выгоднее брать число разрядов не кратное 8, например, 7, 15 или 31. В этом случае для обратной связи используются всего лишь два выхода, то есть достаточно одного двухвходового элемента Исключающее ИЛИ.

Период выходной последовательности генератора составляет (2N-1) тактов, где N - количество разрядов регистра сдвига. За это время каждое из возможных значений выходного кода (кроме одного) встречается один раз. Количество единиц в выходном сигнале больше количества нулей на единицу.

Выходной код 000…0 представляет собой запрещенное состояние, так как он блокирует работу генератора, воспроизводя сам себя снова и снова. Но в то же время получиться такой нулевой код может только сам из себя, поэтому достаточно обеспечить, чтобы его не было при включении питания схемы.

Частоты в спектре выходного сигнала будут следовать с интервалом (fT/2N–1), а огибающая спектра будет практически постоянной до частоты 0,25fT, то есть шум до этой частоты можно считать белым (спад в 3 дБ происходит на частоте 0,45 fT).

Такой генератор использовала известная фирма Hewlett–Packard в своем генераторе шума.

 



Дата добавления: 2017-06-13; просмотров: 2123;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.016 сек.