Физико-химические свойства природного газа


Единицы измерения температуры

Температура определяет степень нагретости тела. С изменением температуры тела меняют свои свойства. Применяются:

– международная стоградусная шкала (шкала Цельсия, °С), в которой за 0°С принята температура таяния льда, а за 100°С - температура кипения воды (при давлении 760 мм рт. ст.);

– абсолютная термодинамическая шкала (шкала Кельвина, К), в которой за 0 К принят абсолютный нуль, т. е. отсутствует движение молекул, за 273,15 К принята температура таяния льда, а за 373,15 К - температура кипения воды.

Соотношения:

Т = t + 273,15;

t = Т – 273,15.

Единицы измерения давления

Различают:

– избыточное (манометрическое) давление Ри – это давление, которое показывает манометр;

– барометрическое (атмосферное) давление Рб – это давление воздуха, т. е. атмосферы;

– абсолютное давление Ра - это полное давление, под которым находится газ, оно равно сумме избыточного и барометрического: Ра = Ри + Рб;

– вакуумметрическое давление (разрежение или вакуум) - это разность между атмосферным и абсолютным давлениями, оно будет меньше атмосферного: Рв = Р6 – Ра.

В качестве единиц измерения давления применяются:

– паскаль (Па) - это давление силы в один Ньютон на один квадратный метр (Н/м2);

– килограмм-сила на квадратный метр (кгс/м2);

– техническая атмосфера: 1 ат = 1 кгс/см2;

– миллиметр водяного столба (мм вод. ст.);

– миллиметр ртутного столба (мм рт. ст.).

Между единицами давления существует связь: 1 кгс/см2 = 10000 кгс/м2 = 10 м вод. ст. = 10000 мм вод. ст. = 735,56 мм рт. ст. = 98066,5 Па = = 0,981 бар.

1 кгс/см2 = 0,1 МПа.

1 МПа = 10 кгс/см2.

1 бар = 1, 0197 кгс/см2.

Удельный объём.

Это объём единицы массы, определяемый как отношение объёма тела к его массе.

v = V/m

Величина, обратная удельному объёму, называется плотностью рабочего тела. Она определяется как отношение массы тела к его объёму.

ρ = m/V

Плотность зависит от давления и температуры. С ростом давления плотность тела увеличивается. Более нагретые тела имеют меньшую плотность.

Теплота сгорания

Удельная теплота сгорания – это количество тепла, полученное от полного сгорания единицы объема газа. Различают:

а) высшую теплоту сгорания Qв – количество тепла, выделившееся при полном сгорании 1 м3 газа с образованием углекислого газа (С02) и воды (Н20);

б) низшую теплоту сгорания Qн – количество тепла, выделившееся при полном сгорании 1 м3 газа с образованием углекислого газа (С02) и водяных паров (Н20).

Разница между Qн и Qв, происходит из-за тепла, идущего на парообразование воды.

Теплота измеряется в калориях или джоулях.

1 калория (кал) - это количество тепла, идущего на нагрев 1 г воды от 19,5 до 20,5°С.

1 кал = 4,187 Дж ≈ 4,2 Дж; 1 Дж = 0,239 кал ≈ 0,24 кал.

 

Состав природного газа

Преимущества:

– высокая теплота сгорания;

– относительно низкая стоимость;

– отсутствие складских помещений для хранения;

– относительная высокая экологичность (меньше вредных примесей);

– лёгкость автоматизации процесса сжигания;

– облегчение труда обслуживающего персонала;

– при сжигании требуется минимальный избыток воздуха для горения;

– при сжигании можно обеспечить более точную регулировку требуемой температуры, чем при сжигании других видов топлива;

– отсутствуют потери от механического недожога;

– форма газового пламени легко регулируется.

Недостатки:

– взрыво– и пожароопасен;

– при повышенной концентрации в воздухе, возможно удушье вследствие уменьшения количества кислорода в воздухе.

Состав природного газа:

1. Горючие компоненты:

– метан СН4 – основная составляющая часть, достигающая 98% по объему;

– тяжелые углеводороды (этан (С2Н6), пропан (С3Н8), бутан (С4Н10) и др.) – содержатся в небольших количествах.

2. Негорючие компоненты (балласт):

– азот N2 – содержится в небольших количествах и выполняет роль инертного газа, т. к. не взаимодействует с кислородом;

– углекислый газ С02 – содержится в небольших количествах; без цвета со слегка кисловатым привкусом и запахом. При содержании в воздухе 10% и более токсичен, тяжелее воздуха;

– кислород 02 - составная часть воздуха; без цвета, запаха и вкуса; является окислителем.

3. Вредные компоненты:

– сероводород Н2S – содержится в небольших количествах; без цвета, с запахом тухлых яиц; токсичен; горит, наличие серы в его составе приводит к коррозии металла. Тяжелее воздуха.

4. Механические примеси (их содержание зависит от способа до­бычи и условий транспортирования газа):

– смолы и пыль - перемешиваясь, могут образовать закупорки в газопроводах;

– вода - при низких температурах замерзает, что приводит к образованию ледяных пробок и обмерзанию дросселирующих устройств; способствует коррозии металла.

Физико-химические свойства природного газа

Природный газ не имеет цвета, запаха и вкуса, нетоксичен.

Плотность газов при t = 0°С, Р = 760 мм рт. ст.: метана - 0,72 кг/м3, воздуха -1,29 кг/м3.

Температура самовоспламенения метана 545 – 650°С. Это означает, что любая смесь природного газа с воздухом, нагретая до этой температуры, воспламеняется без источника зажигания и будет гореть.

Температура горения метана 2100°С в топках 1800°С.

Теплота сгорания метан: Qн = 8500 ккал/м3, Qв = 9500 ккал/м3.

Взрываемость. Различают:

– нижний предел взрываемости - это наименьшее содержание газа в воздухе, при котором происходит взрыв, он составляет для метана – 5%.

При меньшем содержании газа в воздухе взрыва не будет из-за недостатка газа. При внесении стороннего источника энергии – хлопки.

– верхний предел взрываемости - это наибольшее содержание газа в воздухе, при котором происходит взрыв, он составляет для метана – 15%.

При большем содержании газа в воздухе взрыва не будет из-за недостатка воздуха. При внесении стороннего источника энергии – загорание, пожар.

Для взрыва газа кроме содержания его в воздухе в пределах его взрываемости необходим сторонний источник энергии (искра, пламя и т. д.).

При взрыве газа в закрытом объеме (помещение, топка, резервуар и т. д.) разрушений больше, чем на открытом воздухе.

При сжигании газа с недожогом, т. е. с недостатком кислорода, в продуктах сгорания образуется окись углерода (СО), или угарный газ, который является высокотоксичным газом.

Скорость распространения пламени – это скорость перемещения фронта пламени относительно свежей струи смеси.

Ориентировочная скорость распространения пламени метан - 0,67 м/с. Она зависит от состава, температуры, давления смеси, соотношения газа и воздуха в смеси, диаметра фронта пламени, характера движения смеси (ламинарное или турбулентное) и определяет устойчивость горения.

Одоризация газа – это добавление в газ сильно пахнущего вещества (одоранта) для придания газу запаха перед поставкой потребителям.

Требования, предъявляемые к одорантам:

– резкий специфический запах;

– не должны препятствовать горению;

– не должны растворяться в воде;

– должны быть безвредны для человека и оборудования.

В качестве одоранта используется этилмеркаптан (С2Н5SH), его добавляют в метан – 16 г на 1000 м3, зимой норма удваивается.

Человек должен ощущать запах одоранта в воздухе при содержании газа в воздухе 20% от нижнего предела взрываемости для метана – 1% по объему.

Горение газов

Это химический процесс соединения горючих компонентов (водорода и углерода) с кислородом, содержащимся в воздухе. Происходит с выделением тепла и света.

При сгорании углерода образуется углекислый газ (С02), а водорода водяной пар (Н20).

Этапы горения: подача газа и воздуха, образование газовоздушной смеси, зажигание смеси, её горение, удаление продуктов сгорания.

Теоретически, когда сгорает весь газ и все необходимое количество воздуха принимает участие в горении, реакция горения 1 м3 газа:

4 + 202= СО2 + 2Н2О + 8500 ккал/м3.

Для сжигания 1 м3 метана необходимо 9,52 м3 воздуха,.

Практически не весь воздух, подаваемый на горение, будет принимать участие в горении.

Поэтому в продуктах сгорания кроме углекислого газа (С02) и водяных паров (Н20) появятся:

– окись углерода, или угарный газ (СО), при попадании в помещение может вызвать отравление обслуживающего персонала;

– атомарный углерод, или сажа (С), осаждаясь в газоходах и топках, ухудшает тягу, а на поверхностях нагрева - теплообмен.

– несгоревший газ и водород - скапливаясь в топках и газоходах, образуют взрывоопасную смесь.

При нехватке воздуха происходит неполное сгорание топлива – процесс горения происходит с недожогом. Недожог происходит также при плохом перемешивании газа с воздухом и низкой температуре в зоне горения.

Для полного сгорания газа воздух на горение подается в достаточном количестве, воздух и газ должны быть хорошо перемешаны, и в зоне горения необходима высокая температура.

Для полного сгорания газа воздух подается в большем количестве, чем требуется теоретически, т. е. с избытком, не весь воздух примет участие в горении. Часть тепла уйдет на нагрев этого лишнего воздуха и будет выброшена в атмосферу.

Коэффициент избытка воздуха α – число, показывающее во сколько раз действительный расход на горение больше, чем его требуется теоретически:

 

α = Vд/ Vт

где Vд - действительный расход воздух, м3;

Vт - теоретически необходимый воздух, м3.

α = 1,05 – 1,2.

Методы сжигания газа

Воздух, идущий на горение, может быть:

– первичный – подается внутрь горелки, перемешивается с газом, и на горение идет газовоздушная смесь;

– вторичный – поступает в зону горения.

Методы сжигания газа:

1. Диффузионный метод – газ и воздух на горение подаются раздельно и перемешиваются в зоне горения, весь воздух является вторичным. Пламя длинное, требуется большое топочное пространство.

2. Смешанный метод – часть воздуха подается внутрь горелки, смешивается с газом (первичный воздух), часть воздуха подается в зону горения (вторичный). Пламя короче, чем при диффузионном методе.

3. Кинетический метод – весь воздух перемешивается с газом внутри горелки, т. е. весь воздух является первичным. Пламя короткое, требуется небольшое топочное пространство.

Газогорелочные устройства

Газовые горелки - это устройства, обеспечивающие подачу газа и воздуха к фронту горения, образование газовоздушной смеси, стабилизацию фронта горения, обеспечение требуемой интенсивности процесса горения.

Горелка, оборудованная дополнительным устройством (тоннель, воздухораспределительное устройство и т. д.), называется газогорелочным устройством.

Требования к горелкам:

1) должны быть заводского изготовления и пройти государственные испытания;

2) должны обеспечивать полноту сжигания газа при всех рабочих режимах с минимальным избытком воздуха и минимальным выбросом вредных веществ в атмосферу;

3) иметь возможность применения автоматики регулирования и безопасности, а также измерения параметров газа и воздуха перед горелкой;

4) должны иметь простую конструкцию, быть доступными для ремонта и ревизии;

5) должны устойчиво работать в пределах рабочего регулирования, при необходимости иметь стабилизаторы для предотвращения отрыва и проскока пламени;

6) у работающих горелок уровень шума должен быть не выше 85 дБ, а температура поверхности не более 45°С.

Параметры газовых горелок

1) тепловая мощность горелки N г – количество тепла, выделяемое при сгорании газа за 1 ч;

2)низший предел устойчивой работы горелки N н . .п. . – наименьшая мощность, при которой горелка работает устойчиво без отрыва и проскока пламени;

3) минимальная мощность N мин – мощность низшего предела, увеличенная на 10%;

4) верхний предел устойчивой работы горелки N в . .п. . - наибольшая мощность, при которой горелка работает устойчиво без отрыва и проскока пламени;

5) максимальная мощность N макс – мощность верхнего предела, уменьшенная на 10%;

6) номинальная мощность N ном – наибольшая мощность, с которой горелка работает длительное время с наивысшим к.п.д.;

7) диапазон рабочего регулирования – значения мощностей от N мин до N ном ;

8) коэффициент рабочего регулирования – отношение номи­нальной мощности к минимальной.

Классификация газовых горелок:

1) по способу подачи воздуха на горение:

– бездутьевые – воздух поступает в топку за счёт разрежения в ней;

– инжекционные – воздух засасывается в горелку за счёт энергии струи газа;

– дутьевые – воздух подается в горелку или в топку с помощью вентилятора;

2) по степени подготовки горючей смеси:

– без предварительного смешения газа с воздухом;

– с полным предварительным смешением;

– с неполным или частичным предварительным смешением;

3) по скорости истечения продуктов горения (низкая – до 20 м/с, средняя – 20-70 м/с, высокая – более 70 м/с);

4) по давлению газа перед горелками:

– низкому до 0,005 МПа (до 500 мм вод. ст.);

– среднему от 0,005 МПа до 0,3 МПа (от 500 мм вод. ст. до 3 кгс/см2);

– высокому более 0,3 МПа (более 3 кгс/см2);

5) по степени автоматизации управления горелками – с ручным управлением, полуавтоматические, автоматические.

По способу подачи воздуха горелки могут быть:

1) Диффузионные. Весь воздух поступает к факелу из окружающего пространства. Газ подаётся в горелку без первичного воздуха и, выходя из коллектора, смешивается с воздухом за его пределами.

Самая простая по конструкции горелка, обычно труба с насверленными в один или два ряда отверстиями.

Разновидность – подовая горелка. Состоит из газового коллектора, изготовленного из стальной трубы, заглушенной с одного торца. В трубе в два ряда просверлены отверстия. Коллектор устанавливается в щели, из огнеупорного кирпича, опирающегося на колосниковую решетку. Газ через отверстия в коллекторе выходит в щель. Воздух поступает в ту же щель через колосниковую решетку за счёт разрежения в топке или с помощью вентилятора. В процессе работы огнеупорная футеровки щели разогревается, обеспечивая стабилизацию пламени на всех режимах работы.

Достоинства горелки: простота конструкции, надежность работы (невозможен проскок пламени), бесшумность, хорошее регулирование.

Недостатки: малая мощность, неэкономична, высокое пламя.

2) Инжекционные горелки:

а) низкого давления или атмосферная (относятся к горелкам с частичным предварительным смешением). Струя газа выходит из сопла с большой скоростью и за счёт своей энергии захватывает в конфузор воздух, увлекая его внутрь горелки. Смешение газа с воздухом происходит в смесителе, состоящем из горловины, диффузора и огневого насадка. Разрежение, создаваемое инжектором, возрастает с увеличением давления газа, при этом изменяется количество подсасываемого первичного воздуха. Количество первичного воздуха можно изменять при помощи регулировочной шайбы. Изменяя расстояние между шайбой и конфузором, регулируют подачу воздуха.

Для обеспечения полного сгорания топлива часть воздуха поступает за счёт разрежения в топке (вторичный воздух). Регулирование его расхода производится путём изменения разрежения.

Обладают свойством саморегулирования: с увеличением нагрузки возрастает давление газа, который инжектирует в горелку увеличенное количество воздуха. При снижении нагрузки количество воздуха уменьшается.

Горелки ограниченно применяются на оборудовании большой производительности (более 100 кВт). Связано с тем, что коллектор горелки располагается непосредственно в топке. При работе нагревается до высоких температур и быстро выходит из строя. Имеют высокий коэффициент избытка воздуха, что приводит к неэкономичному сжиганию газа.

б) Среднего давления. При повышении давления газа обеспечивается инжекция всего воздуха, необходимого для полного сгорания газа. Весь воздух является первичным. Работают при давлении газа от 0,005 МПа до 0,3 МПа. Относятся к горелкам полного предварительного смешения газа с воздухом. В результате хорошего перемешивания газа и воздуха работают с малым коэффициентом избытка воздуха (1,05-1,1). Горелка Казанцева. Состоит из регулятора первичного воздуха, сопла, смесителя, насадка и пластинчатого стабилизатора. Выходя из сопла, газ имеет достаточно энергии для того, чтобы инжектировать весь воздух необходимый для горения. В смесителе происходит полное перемешивание газа с воздухом. Регулятор первичного воздуха одновременно глушит шум, который возникает из-за высокой скорости газовоздушной смеси. Достоинства:

– простота конструкции;

– устойчивая работа при изменении нагрузки;

– отсутствие подачи воздуха под давлением (нет вентилятора, электродвигателя, воздухопроводов);

– возможность саморегулирования (поддержания постоянного соотношения газ-воздух).

Недостатки:

– большие габариты горелок по длине, особенно горелок увеличенной производительности;

– высокий уровень шума.

3) Горелки с принудительной подачей воздуха. Образование газовоздушной смеси начинается в горелке и завершается в топке. Воздух подаётся с помощью вентилятора. Подача газа и воздуха осуществляется по отдельным трубам. Работают на газе низкого и среднего давления. Для лучшего перемешивания поток газа направляют через отверстия под углом к потоку воздуха.

Для улучшения смешения потоку воздуха сообщают вращательное движение, используя завихрители с постоянным или регулируемым углом установки лопаток.

Горелка газовая вихревая (ГГВ) – газ из распределительного коллектора выходит через отверстия, просверленные в один ряд, и под углом 900 поступает в закрученный с помощью лопаточного завихрителя поток воздуха. Лопатки приварены под углом 450 к наружной поверхности газового коллектора. Внутри газового коллектора расположена труба для наблюдения за процессом горения. При работе на мазуте в неё устанавливают паромеханическую форсунку.

Горелки, предназначенные для сжигания нескольких видов топлива, называются комбинированными.

Достоинства горелок: большая тепловая мощность, широкий диапазон рабочего регулирования, возможность регулирования коэффициента избытка воздуха, возможность предварительного подогрева газа и воздуха.

Недостатки горелок: достаточная сложность конструкции; возможены отрыв и проскок пламени, в связи с чем возникает необходимость применения стабилизаторов горения (керамический туннель, пилотный факел и т. д.).

Аварии на горелках

Количество воздуха в газовоздушной смеси важнейший фактор, влияющий на скорость распространения пламени. В смесях, в которых содержание газа превышает верхний предел его воспламенения, пламя вообще не распространяется. С увеличением количества воздуха в смеси скорость распространения пламени увеличивается, достигая наибольшей величины при содержании воздуха около 90 % его теоретического количества, необходимого для полного сгорания газа. При увеличении расхода воздуха на горелку создается смесь, более бедная газом, способная гореть быстрее и вызвать проскок пламени внутрь горелки. Поэтому, если требуется увеличить нагрузку, сначала увеличивают подачу газа, а затем воздуха. В случае необходимости уменьшения нагрузки поступают наоборот – сначала уменьшают подачу воздуха, а затем газа. В момент пуска горелок воздух не должен в них поступать и зажигание газа проводится в диффузионном режиме за счет воздуха, поступающего в топку, с последующим переходом к подаче воздуха на горелку

1.Отрыв пламени - перемещение зоны факела от выходных отверстий горелки по направлению горения топлива. Происходит, когда скорость газовоздушной смеси становится больше скорости распространения пламени. Пламя становится неустойчивым и может погаснуть. Через погасшую горелку продолжает идти газ, что приводит к образованию взрывоопасной смеси в топке.

Отрыв происходит при: повышении давления газа выше допустимого, резком увеличении подачи первичного воздуха, увеличении разряжения в топке, работа горелки в запредельных режимах относительно указанных в паспорте.

2. Проскок пламени - перемещение зоны факела навстречу горючей смеси. Бывает только в горелках с предварительным смешением газа и воздуха. Происходит тогда, когда скорость газовоздушной смеси ста­новится меньше скорости распространения пламени. Пламя проскакивает внутрь горелки, где продолжает гореть, вызывая деформацию горелки от перегрева. При проскоке возможен небольшой хлопок, пламя погаснет, через неработающую горелку произойдет загазовывание топки и газоходов.

Проскок происходит при: снижении давления газа перед горелкой ниже допустимого; розжиге горелки при подаче первичного воздуха; большой подаче газа при низком давлении воздуха, уменьшение производительности горелок предварительным смешением газа и воздуха ниже значений, указанных в паспорте. Не возможен при диффузионном методе сжигания газа.

Действия персонала при аварии на горелке:

– выключить горелку,

– провентилировать топку,

– выяснить причину аварии,

– сделать запись в журнале,

– доложить ответственному лицу и далее действовать по его указанию.



Дата добавления: 2021-06-28; просмотров: 317;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.03 сек.