Вспомогательные устройства


Экономайзеры и эконостаты применяются в режиме максимальной мощности двигателя для получения обогащенной смеси. Обогащение достигается увеличением расхода топлива посредством специального канала, который начинает открываться при почти полном открытии дроссельной заслонки. То есть при определенной величине открытия дросселя у экономайзеров механически (рис. 7, б), а у эконостатов пневматически (при значительном перепаде давлений) в работу вступает дополнительный жиклер 10, через который проходит добавочное количество топлива. Смесь обогащается до получения коэффициента избытка воздуха 0,85—0,9.

Эконостаты применяют в карбюраторах, питающих относительно неболь­шое число цилиндров, когда из-за пульсации потока затруднительно органи­зовать компенсацию горючей смеси обычным способом — понизить разряжение у топливного жиклера. Существующие эконостаты подают топливо непосредственно в горловину диффузора через распылитель 3 (рис. 8) или в зону входного патрубка 1 главного воздушного канала карбюратора.

Рис. 8. Схема простейшего эконостата:
1 – входной патрубок воздушного канала; 2, 3 — распылители

 

В обоих случаях эконостаты устраняют переобеднение смеси, возникающее иногда при высоких частотах вращения коленчатого вала на средних и больших нагрузках, особенно в много камерных карбюраторах.

Ускорительные насосы. При резком открытии дросселя, например при обгоне автомобиля, смесь обедняется, и двигатель не может развить максимальную мощность.

Обеднение объясняется тем, что скорость воздуха в карбюраторе растет более интенсивно, чем скорость истечения топлива.

Предотвращение обеднения горючей смеси при резком откры­тии дроссельной заслонки достигается с помощью ускорительного насоса, подающего дополнительное топливо. Насос подает только одну порцию топлива, а затем вступает в действие экономайзер. Поршень 16 (см. рис. 7, д) одновременно с открытием дросселя движется вниз, увеличивая давление топлива под собой. В результате шарик клапана 17 прижимается к седлу, закрывая канал поплавковой камеры, и поднимается игла клапана 18. Через форсунку 19 поданная порция топлива впрыскивается в горловину диффузора. В последнее время поршневые ускорительные насосы вытесняются диафрагменными.

Система холостого хода. На холостом ходу эффективная мощность с коленчатого вала не снимается, а вся индикаторная мощность расходуется на преодоление механических потерь. Поэтому для поддержания минимальной частоты вращения коленчатого вала желательно использовать минимальное количество горючей смеси. Но, чтобы двигатель работал устойчиво, смесь должна быть сильно обогащенной. Для получения такой смеси применяют систему холостого хода (рис. 7, в), представляющую собой «отдельный карбю­ратор» с топливным 14 и воздушным 13 жиклерами. Так как на этом режиме дроссель прикрыт, под ним нарастает разряжение, под действием которого смесь выходит через отверстие под дросселем. Количество смеси регулируется винтом 12.

Экономайзер принудительного холостого хода. Принудительный холостой ход — это режим работы двигателя при движении автомобиля накатом с отпущенной педалью управления дроссельной заслонкой, но не выключенной передачей в коробке передач. В данном режиме коленчатый вал двигателя, приводимый от колес автомобиля, имеет повышенную частоту вращения. В результате под прикрытой заслонкой образуется повышенное разряжение, что за единицу времени приводит к увеличенному расходу богатой горючей смеси. Если уже при обогащенных составах смеси топливо сгорает не полностью, то при сильно обогащенных составах недогорание топлива возрастает еще больше. При этом в окружающую среду выбрасывается увеличенное количество окиси углерода. Чтобы это устранить, а также для экономии топлива необходимо на этот период отключить его подачу. Эту задачу выполняет экономайзер принудительного холостого хода. Он представляет собой электромагнитный клапан, который при частоте вращения коленчатого вала более 1500—1700 мин-1 и закрытой дроссельной заслонке перекрывает топливный канал системы холостого хода.

Для работы экономайзера принудительного холостого хода необходимы два датчика: датчик частоты вращения коленчатого вала и датчик положения дроссельной заслонки. Сигналы с этих датчиков обрабатываются в специальном блоке управления электромагнитным клапаном. Такая система носит название системы автоматического управления экономайзером принудительного холостого хода (САУЭПХХ) и позволяет в условиях городского режима движения автомобиля экономить до 5% топлива на каждые 100 км пробега и снизить выброс в окружающую среду токсичных веществ примерно на 25%.

Устройства для облегчения пуска двигателя. При пуске двигателя из-за низкой частоты вращения коленчатого вала скорость движения воздуха, а если двигатель холодный, то и подогрев заряда отсутствует. Состав смеси, соответствующий пределу воспламенения может быть получен только за счет испарения легкокипящих фракций топлива, что возможно при введении во впускной тракт большого количества топлива, т. е. путем приготовления сильно обогащенного состава смеси, для чего закрывают воздушную заслонку (рис. 7, г), а дроссельную заслонку оставляют немного приоткрытой.

В воздушной заслонке установлен клапан 15, который пропускает небольшое количество воздуха. Так как воздушная заслонка закрыта, возросшее разряжение действует на все топливные жиклеры, и топливо в диффузоры интенсивно поступает как через ГДС, так и через систему холостого хода, что в совокупности с ограничением количества воздуха обеспечивает получение сильно обогащенной смеси. В последнее время клапан на воздушной заслонке не устанавливается. Вместо этого периодически открывается и закрывается сама воздушная заслонка в соответствии с тактами всасывания. Управление воз­душной заслонкой осуществляется специальной диафрагменной камерой, которая реагирует на разряжение в смесительной камере.

Ограничители частоты вращения коленчатого вала. Для ограничения максимальной скорости движения грузовых автомобилей в состав системы питания вводят ограничители максимальной частоты вращения коленчатого вала. Наибольшее распространение получил пневмоцентробежный ограничитель (рис. 9), который состоит из центробежного датчика 6 и исполнительного механизма 2.

Рис. 9. Схема пневмоцентробежного ограничителя частоты вращения коленчатого вала: 1 — мембрана; 2— исполнительный мембранный механизм;
3 — двуплечий рычаг; 4 — пружина; 5 — соединительная трубка; 6 — датчик;
7 — клапан; 8 — пружина клапана; 9 — вращающийся корпус;
а — дренажный канал

 

В неподвижном корпусе датчика размешен вращающийся корпус 9, в котором установлен клапан 7. Пружина 8 клапана отрегулирована таким образом, что при частотах вращения коленчатого вала ниже максимального значения клапан удерживается в открытом положении, при достижении максимальной частоты вращения под действием центробежной силы клапан закрывается.

Полость над мембраной 1 исполнительного механизма 2 сообщается с внутренней полостью вращающегося корпуса датчика и каналами со смесительной камерой и задроссельным пространством карбюратора. Полость под мембраной вместе с полостью неподвижного корпуса датчика через канал а сообщается с впускным патрубком двигателя или с окружающей средой.

При частоте вращения коленчатого вала меньше максимальной, когда клапан 7 датчика открыт, обе полости исполнительного механизма сообщаются между собой, и под действием пружины 4 мембрана прогибается вниз.

При превышении значения максимальной частоты вращения клапан опускается в седло, сообщение полости над мембраной с окружающей средой прекращается, вследствие возникающего разряжения диафрагма прогибается вверх, растягивая пружину 4, и через двуплечий рычаг 3 дроссельные заслонки закрываются. Соединение полости над мембраной как с полостью над дроссельной заслонкой, так и с полостью под ней обеспечивает необходимое разряжение над мембраной при любом положении дроссельной заслонки независимо от нагрузки.

 



Дата добавления: 2017-02-13; просмотров: 1103;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.008 сек.