Ориентация и угол наклона солнечного коллектора.


Чтобы производительность солнечного коллектора была максимальной очень важна ориентация иугол наклона коллектора. Чтобы поглощать максимальное количество солнечной энергии плоскость солнечного коллектора должна быть всегда перпендикулярна солнечным лучам. Однако солнце светит на Земную поверхность в зависимости от времени суток и года всегда под различным углом.

Поэтому для монтажа солнечных коллекторов необходимо знать оптимальную ориентацию в пространстве абсорбера солнечного коллектора.

Для оценки оптимального ориентирования коллекторов учитывается вращение Земли вокруг Солнца и вокруг своей оси, а так же изменение расстояния от Солнца.

Для определения положения солнечного коллектора или солнечной батареи необходимо учитывать основные угловые параметры:

  • широта места установки φ;
  • часовой угол ω;
  • угол солнечного склонения δ;
  • угол наклона к горизонту β;
  • азимут α;

Широта места установки (φ) показывает, насколько место находится севернее или южнее от экватора, и составляет угол от 0° до 90°,отсчитываемый от плоскости экватора до одного из полюсов — северного или южного.

Часовой угол (ω)переводит местное солнечное время в число градусов, которое солнце проходит по небу. По определение часовой угол равен нулю в полдень. Земля поворачивается на 15° за один час. Утром угол солнца отрицательный, вечером — положительный.

Угол склонения Солнца (δ) зависит от вращения Земли вокруг Солнца, поскольку орбита вращения имеет эллиптическую форму и сама ось вращения тоже наклонена, то угол меняется в течение года от значения 23.45° до -23.45°. Угол склонения становится равным нулю два раза в год в дни весеннего и осеннего равноденствия.

Склонение солнца для конкретно выбранного дня определяется по формуле:

где n – порядковый номер дня в году, отсчитанный от 1-го января.

Наклон к горизонту (β) образуется между горизонтальной плоскостью и солнечной панелью. К примеру, при монтаже на наклонной крыше угол наклона коллектора определяется крутизной ската крыши.

Азимут (α) характеризует отклонение поглощающей плоскости коллектора от южного направления, при ориентировании солнечного коллектора точно на юг азимут = 0°.

Угол падения солнечных лучей на произвольно ориентированную поверхность, имеющую определенное значение азимута α и угол наклона β, определяется по формуле:

Если в данной формуле заменить значение угла β на 0, тогда получится выражение :

Интенсивность потока солнечного излучения для определенного положения поглощающей панели в пространстве вычисляется по формуле:

где Js и Jd интенсивность потоков прямого и рассеянного солнечного излучения падающие на горизонтальную поверхность, соответственно.

Для обеспечения попадания на абсорбер максимального (за расчетный период) количества солнечной энергии коллектор монтируют в наклонном положении с оптимальным углом наклона к горизонту β, который определяется расчетным методом и зависит от периода использования гелиосистемы. При южном ориентировании коллектора для круглогодичных гелиосистем β = φ, для сезонных гелиосистем β = φ–15°. Тогда формула примет вид,

для сезонных гелиосистем:

для круглогодичных:

Солнечные коллекторы, ориентированные в южном направлении и смонтированные под углом от 30° до 65° относительно горизонта, позволяют достичь максимального значения поглощения солнечного излучения. Но даже при определенных отклонениях от этих условий гелиосистема может вырабатывать достаточное количество энергии.

Установка с небольшим углом наклона более эффективна в случае, если солнечные коллекторы или солнечные батареи нельзя ориентировать на юг.

К примеру, если солнечные панели ориентированы на юго-запад, с азимутом 45° и углом наклона 30°, то такая система сможет поглощать до 95% от максимального количества солнечного излучения. Или при ориентировании в восточном или западном направлении можно обеспечить до 85% попадания энергии на коллектор при установке панелей под углом 25-35°. Если угол наклона коллектора больше, то количество энергии, поступающее на поверхность коллектора, будет более равномерным, для поддержки отопления такой вариант установки более эффективен.

Зачастую ориентирование солнечного коллектора зависит от варианта монтажа солнечных коллекторов, установка коллектора производится на крыше здания, поэтому очень важно на стадии проектирования учесть возможность оптимально установки коллекторов.

Обучающее видео. Монтаж коллектора на скатной крыше

Обучающее видео: Монтаж солнечного коллектора на плоской крыше

Подробнее: http://optonimpex.com/a139084-ustanovka-solnechnogo-kollektora.html

 

Гелиоконцентраторы.Прямое использование солнечной энергии возможно за счёт фотоэлектрического и теплового способов превращения солнечной радиации. Для этих целей применяют солнечные концентраторы и фотоэлектрические преобразователи.

Гелиоконцентратор - устройство для повышения плотности (концентрации) принимаемой лучистой энергии Солнца. Состоит из системы отражателей: плоских или параболоидных (параболоцилиндрических) зеркал различных форм и размеров; реже используются прозрачные оптические фокусирующие линзы.

Отражатели укрепляются на жёстком каркасе; сооружают также полужёсткие и надувные гелиоконцентраторы с покрытием из металлизированных плёнок. Гелиоконцентратор входит в состав различных гелиоустановок, в которых солнечная энергия преобразуется и используется в виде тепла или электроэнергии в солнечных печах, при гелиосварке, стерилизации, в ряде других технологических процессов, в сочетании с солнечным термоэлектрогенератором и т. п.

Гелиоконцентратор может повышать плотность энергии солнечной радиации в несколько тысяч раз, доводя её до 35·10³ кВт/м², что только в два раза меньше плотности лучистой энергии на поверхности Солнца (74·10³ кВт/м²). Для такой концентрации энергии строят гелиоустановки, зеркальная система которых (параболоидного и других типов) может иметь диаметр до 10 м.

Гелиоконцентраторы можно условно разделить на две группы – точечные и линейные. К точечным относятся те устройства, в которых отраженные лучи собираются в одну условную фокальную точку – пятно. В линейных концентраторах при помощи параболоцилиндрического отражателя лучистая энергия концентрируется в фокальной линии, по оси которой размещается труба для движения теплоносителя. Температура теплоносителя в них может достигать 300-400 °С.

Неотъемлемой частью гелиоконцентраторов является система ориентации, которая позволяет непрерывно отслеживать положение Солнца и в соответствии с ним осуществлять перемещение концентраторов для устойчивого положения фокуса относительно отражательных элементов.



Дата добавления: 2016-12-27; просмотров: 3443;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.008 сек.