Теория приближенных вычислений

Нечёткая логика и нейронные сети

Введение

Нечёткая логика (англ. fuzzy logic) — раздел математики, являющийся обобщением классической логики и теории множеств, базирующийся на понятии нечёткого множества, впервые введённого Лотфи Заде в 1965 году как объекта с функцией принадлежности элемента к множеству, принимающей любые значения в интервале [0,1] , а не только 0 или 1. На основе этого понятия вводятся различные логические операции над нечёткими множествами и формулируется понятие лингвистической переменной, в качестве значений которой выступают нечёткие множества.

Предметом нечёткой логики считается исследование рассуждений в условиях нечёткости, размытости, сходных с рассуждениями в обычном смысле, и их применение в вычислительных системах.

Направления исследований нечёткой логики

В настоящее время существует, по крайней мере, два основных направления научных исследований в области нечёткой логики:

• нечёткая логика в широком смысле (теория приближенных вычислений);

• нечёткая логика в узком смысле (символическая нечёткая логика).

Символическая нечёткая логика

Символическая нечёткая логика основывается на понятии t-нормы. После выбора некоторой t-нормы (а её можно ввести несколькими разными способами) появляется возможность определить основные операции над пропозициональными переменными: конъюнкцию, дизъюнкцию, импликацию, отрицание и другие.

Нетрудно доказать теорему о том, что дистрибутивность, присутствующая в классической логике, выполняется только в случае, когда в качестве t-нормы выбирается t-норма Гёделя.

Кроме того, в силу определенных причин, в качестве импликации чаще всего выбирают операцию, называемую residium (она, вообще говоря, также зависит от выбора t-нормы).

Определение основных операций, перечисленных выше, приводит к формальному определению базисной нечёткой логики, которая имеет много общего с классической булевозначной логикой (точнее, с исчислением высказываний).

Существуют три основных базисных нечётких логики: логика Лукасевича, логика Гёделя и вероятностная логика (англ. product logic). Интересно, что объединение любых двух из трёх перечисленных выше логик приводит к классической булевозначной логике.

Теория приближенных вычислений

Основное понятие нечёткой логики в широком смысле — нечёткое множество, определяемое при помощи обобщенного понятия характеристической функции. Затем вводятся понятия объединения, пересечения и дополнения множеств (через характеристическую функцию; задать можно различными способами), понятие нечёткого отношения, а также одно из важнейших понятий — понятие лингвистической переменной.

Вообще говоря, даже такой минимальный набор определений позволяет использовать нечёткую логику в некоторых приложениях, для большинства же необходимо задать ещё и правило вывода (и оператор импликации).

 

При формализации знаний достаточно часто встречаются качественные знания, например, высокая температура при гриппе, слабое свечение нити накаливания, молодой дипломат и т.д. Для формального представления таких качественных знаний американский математик, профессор информатики в Университете в Беркли (Калифорния) Лофти А.Заде предложил в 1965 году в журнале «Information and Control» формальный аппарат нечеткой (fuzzy) логики.

Лофти А.Заде (Lotfi Askar Zadeh) родился 4 февраля 1921г в Баку,. откуда семья в 1932 году преехала в Иран, где на протяжении 8 лет учился в Американском колледже Тегерана (впоследствии известном как Alborz[en] — миссионерской пресвитерианской школе с персидским языком обучения), затем на электроинженерном факультете в Тегеранском университете (окончил в 1942 году). После окончания университета в июле 1944 года переехал в Соединенные Штаты и в сентябре поступил в Массачусетский технологический институт (получил диплом магистра в области электрической инженерии в 1946 году). Родители Лотфи Заде в это время жили в Нью-Йорке (мать работала врачом), где он поступил в аспирантуру Колумбийского университета, а после защиты диссертации в 1949 году остался там же ассистентом на инженерном отделении. С 1959 года работает в Калифорнийском университете (Беркли).

Лофти Заде рассказывал: «Большая часть знаний, которые мы храним в своём мозгу, неточные. «Джон - старый, а Джейн - молодая». «Майкл живёт около Беркли». «Большинство богатых людей имеют несколько автомобилей». Мы всегда говорим так, но ясно ли из этих фраз, сколько лет Джону и Джейп, каково расстояние от дома Майкла до нашего университета в Беркли, а также, что означают слова «большинство», «несколько», «богатый»? В то же время машины, на которые мы возлагаем сегодня все наши надежды, должны как-то воспринять смысл подобных чисто человеческих высказываний. Вот потому я и пытаюсь разрабатывать свою «размытую логику», которая теперь, мне кажется, превращается уже в теорию приближённых рассуждений, - говорил Лофти Заде и один за другим демонстрировал графики и таблицы, содержавшие ответы на поставленные им в начале доклада вопросы. Вот «кривая молодости». Согласно ей человек молод всю свою жизнь, но только с разным коэффициентом: с единицей в двадцать лет, 0,9 в двадцать пять, 0,8 в тридцать, 0,6 в сорок. Итак, если «Джейн - молодая», то машина знает теперь, что, скажем двадцать восемь лет ей следует считать с вероятностью 0,86. Когда в тексте встречается слово «очень», машина сразу возведёт коэффициент в квадрат, а на сказанное мимоходом «более или менее» отреагирует тем, что извлечёт квадратный корень. Чуть сложнее, но в принципе так же поступит она с «Очень Большим Домом», - здесь, п

 

Пусть E - универсальное множество, x - элемент E, а R - определенное свойство. Обычное (четкое) подмножество N универсального множества E, элементы которого удовлетворяют свойство R, определяется как множество упорядоченной пары N = {mN (х)/х}, где mN(х) - характеристическая функция, принимающая значение 1, когда x удовлетворяет свойство R, и 0 - в другом случае.

Нечеткое подмножество отличается от обычного тем, что для элементов x из E нет однозначного ответа "нет" относительно свойства R. В связи с этим, нечеткое подмножество N универсального множества E определяется как множество упорядоченных пар N = {μN(x)/x}, где μN(x) - характеристическая функция принадлежности (или просто функция принадлежности), принимающая значение в некотором упорядоченном множестве M (например, M = [0,1]). Функция принадлежности указывает степень (или уровень) принадлежности элемента x к подмножеству N. Множество M называют множеством принадлежностей. Если M = {0,1}, тогда нечеткое подмножество N может рассматриваться как обычное или четкое множество.

Таким образом, нечеткое множество N можно записать как

nN = Σ(μ(Xi) / Xi), i=1

где Xi - i-е значение базовой шкалы, а знак " Σ" не является обозначением операции сложения, а имеет смысл объединения.






Дата добавления: 2016-12-27; просмотров: 601; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2017 год. Материал предоставляется для ознакомительных и учебных целей. | Обратная связь
Генерация страницы за: 0.009 сек.