Арифметические команды


Арифметические команды рассматривают коды операндов как числовые двоичные или двоично-десятичные коды. Эти команды могут быть разделены на пять основных групп:

• команды операций с фиксированной запятой (сложение, вычитание, умножение, деление);

• команды операций с плавающей запятой (сложение, вычитание, умножение, деление);

• команды очистки;

• команды инкремента и декремента;

• команда сравнения.

Команды операций с фиксированной запятой работают с кодами в регистрах процессора или в памяти как с обычными двоичными кодами. Команда сложения (ADD) вычисляет сумму двух кодов. Команда вычитания (SUB) вычисляет разность двух кодов. Команда умножения (MUL) вычисляет произведение двух кодов (разрядность результата вдвое больше разрядности сомножителей). Команда деления (DIV) вычисляет частное от деления одного кода на другой. Причем все эти команды могут работать как с числами со знаком, так и с числами без знака.

Команды операций с плавающей запятой (точкой) используют формат представления чисел с порядком и мантиссой (обычно эти числа занимают две последовательные ячейки памяти). В современных мощных процессорах набор команд с плавающей запятой не ограничивается только четырьмя арифметическими действиями, а содержит и множество других более сложных команд, например, вычисление тригонометрических функций, логарифмических функций, а также сложных функций, необходимых при обработке звука и изображения.

Команды очистки (CLR) предназначены для записи нулевого кода в регистр или ячейку памяти. Эти команды могут быть заменены командами пересылки нулевого кода, но специальные команды очистки обычно выполняются быстрее, чем команды пересылки. Команды очистки иногда относят к группе логических команд, но суть их от этого не меняется.

Команды инкремента (увеличения на единицу, INC) и декремента (уменьшения на единицу, DEC) также бывают очень удобны. Их можно в принципе заменить командами суммирования с единицей или вычитания единицы, но инкремент и декремент выполняются быстрее, чем суммирование и вычитание. Эти команды требуют одного входного операнда, который одновременно является и выходным операндом.

Наконец, команда сравнения (обозначается CMP) предназначена для сравнения двух входных операндов. По сути, она вычисляет разность этих двух операндов, но выходного операнда не формирует, а всего лишь изменяет биты в регистре состояния процессора (PSW) по результату этого вычитания. Следующая за командой сравнения команда (обычно это команда перехода) будет анализировать биты в регистре состояния процессора и выполнять действия в зависимости от их значений. В некоторых процессорах предусмотрены команды цепочечного сравнения двух последовательностей операндов, находящихся в памяти (например, в процессоре 8086 и совместимых с ним).

Логические команды

Логические команды выполняют над операндами логические (побитовые) операции, то есть они рассматривают коды операндов не как единое число, а как набор отдельных битов. Этим они отличаются от арифметических команд. Логические команды выполняют следующие основные операции:

• логическое И, логическое ИЛИ, сложение по модулю 2 (Исключающее ИЛИ);

• логические, арифметические и циклические сдвиги;

• проверка битов и операндов;

• установка и очистка битов (флагов) регистра состояния процессора (PSW).

Команды логических операций позволяют побитно вычислять основные логические функции от двух входных операндов. Кроме того, операция И (AND) используется для принудительной очистки заданных битов (в качестве одного из операндов при этом используется код маски, в котором разряды, требующие очистки, установлены в нуль). Операция ИЛИ (OR) применяется для принудительной установки заданных битов (в качестве одного из операндов при этом используется код маски, в котором разряды, требующие установки в единицу, равны единице). Операция "Исключающее ИЛИ" (XOR) используется для инверсии заданных битов (в качестве одного из операндов при этом применяется код маски, в котором биты, подлежащие инверсии, установлены в единицу). Команды требуют двух входных операндов и формируют один выходной операнд.

Команды сдвигов позволяют побитно сдвигать код операнда вправо (в сторону младших разрядов) или влево (в сторону старших разрядов). Тип сдвига (логический, арифметический или циклический) определяет, каково будет новое значение старшего бита (при сдвиге вправо) или младшего бита (при сдвиге влево), а также определяет, будет ли где-то сохранено прежнее значение старшего бита (при сдвиге влево) или младшего бита (при сдвиге вправо). Например, при логическом сдвиге вправо в старшем разряде кода операнда устанавливается нуль, а младший разряд записывается в качестве флага переноса в регистр состояния процессора. А при арифметическом сдвиге вправо значение старшего разряда сохраняется прежним (нулем или единицей), младший разряд также записывается в качестве флага переноса.

Циклические сдвиги позволяют сдвигать биты кода операнда по кругу (по часовой стрелке при сдвиге вправо или против часовой стрелки при сдвиге влево). При этом в кольцо сдвига может входить или не входить флаг переноса. В бит флага переноса (если он используется) записывается значение старшего бита при циклическом сдвиге влево и младшего бита при циклическом сдвиге вправо. Соответственно, значение бита флага переноса будет переписываться в младший разряд при циклическом сдвиге влево и в старший разряд при циклическом сдвиге вправо.

Для примера на рис. 2.3 показаны действия, выполняемые командами сдвигов вправо.

Команды проверки битов и операндов предназначены для установки или очистки битов регистра состояния процессора в зависимости от значения выбранных битов или всего операнда в целом. Выходного операнда команды не формируют. Команда проверки операнда (TST) проверяет весь код операнда в целом на равенство нулю и на знак (на значение старшего бита), она требует только одного входного операнда. Команда проверки бита (BIT) проверяет только отдельные биты, для выбора которых в качестве второго операнда используется код маски. В коде маски проверяемым битам основного операнда должны соответствовать единичные разряды.

Рис. 2.3.Команды сдвигов вправо.

Наконец, команды установки и очистки битов регистра состояния процессора (то есть флагов) позволяют установить или очистить любой флаг, что бывает очень удобно. Каждому флагу обычно соответствуют две команды, одна из которых устанавливает его в единицу, а другая сбрасывает в нуль. Например, флагу переноса C (от Carry) будут соответствовать команды CLC (очистка) и SEC или STC (установка).

Команды переходов

Команды переходов предназначены для организации всевозможных циклов, ветвлений, вызовов подпрограмм и т.д., то есть они нарушают последовательный ход выполнения программы. Эти команды записывают в регистр-счетчик команд новое значение и тем самым вызывают переход процессора не к следующей по порядку команде, а к любой другой команде в памяти программ. Некоторые команды переходов предусматривают в дальнейшем возврат назад, в точку, из которой был сделан переход, другие не предусматривают этого. Если возврат предусмотрен, то текущие параметры процессора сохраняются в стеке. Если возврат не предусмотрен, то текущие параметры процессора не сохраняются.

Команды переходов без возврата делятся на две группы:

• команды безусловных переходов;

• команды условных переходов.

В обозначениях этих команд используются слова Branch (ветвление) и Jump (прыжок).

Команды безусловных переходов вызывают переход в новый адрес независимо ни от чего. Они могут вызывать переход на указанную величину смещения (вперед или назад) или же на указанный адрес памяти. Величина смещения или новое значение адреса указываются в качестве входного операнда.

Команды условных переходов вызывают переход не всегда, а только при выполнении заданных условий. В качестве таких условий обычно выступают значения флагов в регистре состояния процессора (PSW). То есть условием перехода является результат предыдущей операции, меняющей значения флагов. Всего таких условий перехода может быть от 4 до 16. Несколько примеров команд условных переходов:

• переход, если равно нулю;

• переход, если не равно нулю;

• переход, если есть переполнение;

• переход, если нет переполнения;

• переход, если больше нуля;

• переход, если меньше или равно нулю.

Если условие перехода выполняется, то производится загрузка в регистр-счетчик команд нового значения. Если же условие перехода не выполняется, счетчик команд просто наращивается, и процессор выбирает и выполняет следующую по порядку команду.

Специально для проверки условий перехода применяется команда сравнения (CMP), предшествующая команде условного перехода (или даже нескольким командам условных переходов). Но флаги могут устанавливаться и любой другой командой, например командой пересылки данных, любой арифметической или логической командой. Отметим, что сами команды переходов флаги не меняют, что как раз и позволяет ставить несколько команд переходов одну за другой.

Совместное использование нескольких команд условных и безусловных переходов позволяет процессору выполнять разветвленные алгоритмы любой сложности. Для примера на рис. 2.4 показано разветвление программы на две ветки с последующим соединением, а на рис. 2.5 — разветвление на три ветки с последующим соединением.

Команды переходов с дальнейшим возвратом в точку, из которой был произведен переход, применяются для выполнения подпрограмм, то есть вспомогательных программ. Эти команды называются также командами вызова подпрограмм (распространенное название — CALL). Использование подпрограмм позволяет упростить структуру основной программы, сделать ее более логичной, гибкой, легкой для написания и отладки. В то же время надо учитывать, что широкое использование подпрограмм, как правило, увеличивает время выполнения программы.

Рис. 2.4.Реализация разветвления на две ветки.

Рис. 2.5.Реализация разветвления на три ветки.

Все команды переходов с возвратом предполагают безусловный переход (они не проверяют никаких флагов). При этом они требуют одного входного операнда, который может указывать как абсолютное значение нового адреса, так и смещение, складываемое с текущим значением адреса. Текущее значение счетчика команд (текущий адрес) сохраняется перед выполнением перехода в стеке.

Для обратного возврата в точку вызова подпрограммы (точку перехода) используется специальная команда возврата (RET или RTS). Эта команда извлекает из стека значение адреса команды перехода и записывает его в регистр-счетчик команд.

Особое место среди команд перехода с возвратом занимают команды прерываний (распространенное название — INT). Эти команды в качестве входного операнда требуют номер прерывания (адрес вектора). Обслуживание таких переходов осуществляется точно так же, как и аппаратных прерываний. То есть для выполнения данного перехода процессор обращается к таблице векторов прерываний и получает из нее по номеру прерывания адрес памяти, в который ему необходимо перейти. Адрес вызова прерывания и содержимое регистра состояния процессора (PSW) сохраняются в стеке. Сохранение PSW — важное отличие команд прерывания от команд переходов с возвратом.

Команды прерываний во многих случаях оказываются удобнее, чем обычные команды переходов с возвратом. Сформировать таблицу векторов прерываний можно один раз, а потом уже обращаться к ней по мере необходимости. Номер прерывания соответствует номеру подпрограммы, то есть номеру функции, выполняемой подпрограммой. Поэтому команды прерывания гораздо чаще включаются в системы команд процессоров, чем обычные команды переходов с возвратом.

Для возврата из подпрограммы, вызванной командой прерывания, используется команда возврата из прерывания (IRET или RTI). Эта команда извлекает из стека сохраненное там значение счетчика команд и регистра состояния процессора (PSW).

Отметим, что у некоторых процессоров предусмотрены также команды условных прерываний, например, команда прерывания при переполнении.

Конечно, в данном разделе мы рассмотрели только основные команды, наиболее часто встречающиеся в процессорах. У конкретных процессоров могут быть и многие другие команды, не относящиеся к перечисленным группам команд. Но изучать их надо уже после того, как выбран тип процессора, подходящий для задачи, решаемой данной микропроцессорной системой.


 



Дата добавления: 2016-12-27; просмотров: 4250;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.011 сек.