И вывод расчетной формулы


Прибор для выполнения работы (рис. 3.3) состоит из махового колеса 1, шкива 3, укрепленных на одной оси 2. На шкив наматывается нить, к концу которой прикрепляется груз 4. При падении груза с высоты h, отсчитываемой по линейке 5 до приемного столика 6, вся система приводится во вращательное движение.

Груз массой m, поднятый на высоту h от приемного столика, обладает потенциальной энергией mgh. Освобожденный без толчка груз начинает двигаться с ускорением, а маховое колесо приводится во вращение. В момент, когда груз коснется приемного столика, вся потенциальная энергия перейдет в кинетическую энергию поступательного движения падающего груза:

 

и в кинетическую энергию вращательного движения колеса и шкива:

.

Частью энергии, затрачиваемой на преодоление трения в подшипнках, в данной работе пренебрегают.

 

 

Рис. 3.3.

 

Момент инерции системы можно определить из закона сохранения энергии: полная механическая энергия замкнутой системы тел, взаимодействующих консервативными силами, не изменяется. В рассматриваемом случае

, (3.1)

где u – скорость груза в момент касания пола;

w – угловая скорость колеса.

В уравнение (3.1) подставим значение (при падении без начальной скорости пройденный путь , отсюда ) и значение . В результате получим:

,

отсюда

. (3.2)

Здесь момент инерции колеса определяется через массу падающего груза m, высоту h, с которой падает груз, и время падения груза, но от них не зависит. При выполнении лабораторной работы убедитесь в этом, изменяя массу падающего груза и высоту падения.

 

ИЗУЧЕНИЕ УПРУГИХ

ДЕФОРМАЦИЙ

При изучении обратите внимание на то, что, несмотря на существование различных видов деформаций тел (одностороннее растяжение или сжатие, всестороннее растяжение или сжатие, кручение, сдвиг, изгиб), все они подчиняются закону Гука, согласно которому сила упругости Fупр, возникающая при малых деформациях любого вида, пропорциональна деформации (смещению) Dх, т. е.

, (4.1)

где k – коэффициент упругости.

Знак минус указывает на противоположность направлений силы упругости и смещения.

Необходимо твердо уяснить, что все виды деформаций, в том числе и деформация изгиба, могут быть сведены к деформациям одностороннего сжатия и растяжения. При деформации изгиба стержня одни части его испытывают растяжение, а другие – сжатие (рис. 4.1). Средняя часть стержня почти не оказывает сопротивление изгибу. По этой причине сплошной стержень и трубчатый одинакового диаметра обладают почти одинаковым сопротивлением изгибу.

Обратите внимание на практическое использование этого вывода, а именно, стержни, работающие на изгиб, обычно делают полыми (трубчатыми), чем достигается экономия материала и облегчение конструкций без ущерба их прочности. С такими же явлениями встречаются и в природе: трубчатое строение имеют стебли злаковых растений, кости птиц и др.

 

 

Рис. 4.1.

 

Физический смысл модуля Юнга уясните на примере деформации одностороннего растяжения. Пусть к нижнему концу закрепленного стержня длиной l и площадью поперечного сечения S приложена деформирующая сила F. Стержень удлиняется на , и в нем возникает сила упругости Fупр (рис. 4.2). Следует помнить, что при этом , т. е. сила упругости равна по величине, но противоположна по направлению приложенной к телу силе.

 

 

Рис. 4.2.

 

Опыт показывает, что удлинение стержня пропорционально деформирующей силе, длине стержня и обратно пропорционально площади его поперечного сечения, т. е.

; (4.2)

 

, (4.3)

где – коэффициент, характеризующий упругие свойства ве-

щества стержня. Он называется модулем упругости, или

модулем Юнга.

Физический смысл модуля Юнга заключается в следующем. Из формулы (4.2) следует, что

. (4.4)

Полагая и , получим:

т. е. модуль упругости вещества численно равен силе, растягивающей стержень единичного поперечного сечения в два раза. Измеряется модуль упругости в паскалях (Па).



Дата добавления: 2016-08-23; просмотров: 2341;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.009 сек.