Основные механизмы упрочнения сплавов


 

Механические свойства металла или сплава определяются его способностью пластически деформироваться. Чем легче материал деформируется, тем выше его пластичность и ниже прочность. Сопротивление деформированнию металлических материалов в кристаллическом состоянии формируется четырьмя принципиально различными механизмами. Это твердорастворное, дислокационное, зернограничное и дисперсионное упрочнение.В современных конструкционных материалах чаще всего используется комбинированное взаимодействие нескольких из этих механизмов, нередко всех четырех.

Твердорастворное упрочнение основано на введении в кристаллическую решетку металла атомов замещения или внедрения. При этом кристаллическая решетка основного металла искажается вследствие различного размера атомов, образующих твердый раствор. Особенно большие смещения атомов возникают при образовании твердых растворов внедрения (например, атомы углерода или азота в железных сплавах). Дислокации при своем движении должны преодолевать искажения кристаллической решетки, что затрудняет деформацию.

Данный механизм упрочнения проявляется при формировании любых сплавов с твердым раствором. Поэтому чистые металлы всегда имеют прочность ниже, чем сплавы на их основе.

Дислокационное (субструктурное) упрочнение достигается при формировании или скоплении в кристаллической решетке большого числа дислокаций вплоть до плотностей 1010 – 1011 см-2. Дислокации, скользящие через хаотически расположенные неподвижные дислокации, испытывают со стороны последних сопротивление. Благодаря упругому взаимодействию и междислокационным реакциям, дислокации не сохраняют хаотическе расположение, а создают различные субструктуры, отличающиеся определенным порядком в их расположении (рис. 4.2).

 

Рис. 4.2. Электронно-микроскопическое изображение дислокационной структуры в технически чистом титане: а – хаотически расположенные дислокации; б – упорядоченная дислокационная субструктура (× 25000)

Сопротивление движению дислокации через упорядоченное расположение дислокаций (субструктуру) отличается от сопротивления при движении через хаотическое распределение дислокаций. Если в последнем случае оно зависит только от плотности дислокаций, то при организации субструктуры оно уже зависит от параметров последней. Это явление и называется субструктурным упрочнением. В формировании прочности закаленной стали оно дает значительный вклад, порой превышающий вклад твердорастворного упрочнения.

В последнее время развиваются технологии, позволяющие создать определенные субструктуры в металлических сплавах, обеспечивающие им стабильные прочностные свойства.

Зернограничное (поликристаллическое) упрочнение. Большинство используемых материалов – поликристаллы. Наличие границ зерен в поликристалле приводит к его упрочнению. При определенном значении напряжения дислокации не могут перейти через границу в другое зерно и начинают тормозиться. Для преодоления границы им необходимо дополнительное напряжение. Экспериментально установлено, что с уменьшением среднего размера зерна d сопротивление деформированию Δσ возрастает в соответствии с эмпирическим соотношением:

 

Δσ = k d-1/2,

 

где k – коэффициент, не зависящий от размера зерна.

 

В последние годы интенсивно развиваются технологии, связанные с использованием поликристаллических материалов с субмикрокристаллическим размером зерен. Таким путем удается значительно повысить сопротивление деформированию. В настоящее время разработаны сплавы промышленного применения на основе алюминия и меди со стабильным размером зерен 0,1 – 0,4 мкм.

Дисперсионное упрочнение, или упрочнение дисперсными частицами, заключается в образовании мелких выделений второй фазы в матрице основного металла или сплава. Эти выделения могут иметь ту же самую или иную кристаллическую решетку, создавать поля напряжений, быть перерезаемыми или неперерезаемыми для дислокаций. В любом случае они создают дополнительные препятствия для движения дислокаций и могут значительно повышать прочность материала (рис. 4.3).

Рис. 4.3. Схема перемещения дислокации в двухфазных сплавах при перерезании частиц второй фазы (а) и при образовании дислокационных петель (б): 1 - 5 – последовательные стадии перемещения

Таким механизмом повышают прочность отпущенной или стареющей стали и многих алюминиевых и никелевых сплавов. В структуре сплавов могут формироваться дисперсные частицы карбидов (например: Fe3C, Сr23С6, TiC), интерметаллических соединений (например: Со7W6, СuАl2), оксидов (например: SiO2, Аl2O3) и др.

 



Дата добавления: 2019-02-08; просмотров: 740;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.008 сек.