Численные методы и приближённые вычисления

Раздел математики, занимающийся построением и обоснованием численных алгоритмов, решений сложных задач из различных областей науки и производственной деятельности называется прикладной математикой.

Главная задача прикладной математики нахождение решений с требующейся точностью. Этим она отличается от классической математики, которая основное внимание уделяет исследованию условий существования решений и его свойств.

В истории прикладной математики можно различить 3 периода:

1 период 3-4 тыс. лет назад – вычисление объемов, площадей и решение простых задач арифметики, алгебры, геометрии. (жрецы)

2 период начался с Ньютона. Решались задачи астрономии, геодезии и расчета механических конструкций. Задачи сводились либо к решению ОДУ, либо систем линейных алгебраических уравнений (СЛАУ). Бруно, Коперник.

3 период начался с 1940 года, когда надо было быстро рассчитывать, быстро передвигаться, предметы (катюша), зенитные орудия и т.д.

Курчатов, Сахаров, Королев, Появились ЭВМ.

Это потребовало от исследователей разработки и совершенствования ранее существующих методов и разработки новых методов.

Не следует думать, что знание численных методов и новых ЭВМ позволяет сразу решить любую задачу.

Решение сложной инженерной задачи выполняется в следующей последовательности.

Формулируется конечная цель решения, выявляются исходные и получаемые параметры.

Система отношений, связывающая исходные и конечные параметры.

Позволяет по исходным данным найти исходный результат. Составляется схема последовательных действий (алгоритм).

 

Тот же алгоритм, но записанный на языке «понятном» для ЭВМ.

 

При построении математической модели могут быть упущены или некорректно учтены некоторые важные обстоятельства. Выбранный метод решения может дать недопустимо грубый результат. При составление алгоритма или программы могут быть допущены различного рода ошибки. И если инженер является узким специалистом только в своей области специальных знаний, то он полностью зависит от математика и программиста. Знание курса вычислительной математики позволяет избавиться от этой зависимости.



Раздел вычислительной математики состоит из следующих частей:

1) Общие понятия об интерполировании функции. Численное интегрирование и дифференцирование.

2) Решение СЛАУ.

3) Решение нелинейных уравнений.

4) ОДУ.

5) Задачи на собственные решения.

Методы решения

Методы решения задач делятся на аналитические, графические и численные.

Численные методы- это методы приближенного или точного решения математической задачи, основанные на построении конечной последовательности арифметических действий над числами. Численные методы связанны, прежде всего, с погрешностями при работе с числовой информацией.






Дата добавления: 2016-07-27; просмотров: 337; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2017 год. Материал предоставляется для ознакомительных и учебных целей. | Обратная связь
Генерация страницы за: 0.004 сек.