Источники тока. Сторонние силы. ЭДС источника тока.


Если два разноименно заряженных тела соединить проводником, то в нем возникает электрический ток. Возникновение тока приводит к тому, что поле очень быстро исчезает и, следовательно, ток прекращается. Для того, чтобы поддерживать ток достаточно длительное время нужно от тела с меньшим потенциалом непрерывно отводить приносимые заряды, а к телу с большим потенциалом непрерывно их подводить. Иными словами электрическая цепь должна быть замкнутой. Но электрическое поле не может перемещать заряды по замкнутому пути и поэтому наряду с электрическими силами на перемещающиеся заряды должны действовать и силы не электростатического характера, так называемые сторонние силы.

Величину равную работе сторонних сил по перемещению единичного положительного заряда называют электродвижущей силой источника (ЭДС)

. 4.9

По аналогии с электрическими силами стороннюю силу можно представить в виде:

, 4.10

где - напряженность поля сторонних сил.

Тогда и, следовательно,

 

. 4.11

 

 

Рассмотрим неоднородный участок цепи 1 – 2 (рис.22). На участке 1-2 на заряды будут действовать две силы: электрическая сила и сторонняя сила и их результирующая . Тогда работа по перемещению заряда между точками 1 и 2 будет определяться по формуле:

. 4.12

Но , а , и тогда . 4.13

Величину называют напряжением между двумя точками электрической цепи

. 4.14

При отсутствии источника тока напряжение совпадает с разностью потенциалов.

4.4.3. Работа и мощность постоянного тока. Закон Джоуля - Ленца.

При упорядоченном перемещении электрических зарядов электрическое поле совершает работу . Из 4.1 найдем, что и тогда . После интегрирования можно получить

. 4.15

Следовательно, для мощности тока получим:

. 4.16

При прохождении тока по проводнику он нагревается. Джоуль и Ленц установили, что количество теплоты, выделяющееся в проводнике, может быть найдено по формуле:

. 4.17

Если сила тока изменяется во времени, то закон Джоуля-Ленца можно записать в виде:

. 4.18

Закон Джоуля – Ленца можно записать в дифференциальной форме. Выделим в проводнике с током I элементарный объем в форме цилиндра длиной и площадью поперечного сечения . Согласно закону Джоуля – Ленца 4.17 в нем будет выделяться количество теплоты:

. 4.19

Количество теплоты, отнесенное к единице объема и единице времени, называется удельной тепловой мощностью тока

. 4.20

Учитывая 4.19 выражение 4.20 примет вид

. 4.21

Воспользовавшись соотношением 4.8 выражение 4.21 можно записать в виде:

. 4.22

Формулы 4.21 и 4.22 выражают закон Джоуля – Ленца в дифференциальной форме.

5.4.3. Закон Ома для неоднородного участка цепи.

Чтобы получить закон Ома для неоднородного участка цепи, т.е. участка на котором действует ЭДС, воспользуемся законом сохранения энергии. Пусть на концах участка 1 – 2 (рис. 22) поддерживается разность потенциалов . Обозначим ЭДС, действующую на участке , и зададим направление тока и ЭДС.

Если проводник неподвижен, то единственным результатом протекания тока будет его нагревание. Количество теплоты, выделяющееся в проводнике, определяется по закону Джоуля – Ленца 4.17:

. 4.23

При перемещении электрического заряда совершается работа

. 4.24

Согласно закону сохранения энергии и тогда

и после сокращения на окончательно получим

. 4.25

Формула 4.25 выражает закон Ома для неоднородного участка цепи. Из 4.25 следуют частные случаи:

1. Если , то закон Ома для однородного участка цепи.

2. Если цепь замкнута , то закон Ома для замкнутой цепи.

 

6.4.3. Разветвленные цепи. Правила Кирхгофа.

Закон Ома для неоднородного участка цепи позволяет рассчитать любую электрическую цепь, но расчет этот довольно сложен. Расчет электрических цепей значительно упрощается, если воспользоваться правилами Кирхгофа.

Назовем узлом электрической цепи точку, в которой сходится не менее трех проводников (рис. 23). Токи, втекающие в узел, будем считать положительными, а вытекающие – отрицательными и тогда для узла (рис. 23), получим:

. 4.26

Это и есть первое правило Кирхгофа – алгебраическая сумма токов сходящихся в узле равна нулю. Первое правило Кирхгофа вытекает из закона сохранения электрического заряда.

Второе правило Кирхгофа является следствием закона сохранения энергии. Выделим в разветвленной электрической цепи замкнутый контур 1-2-3 (рисю 24). Зададим направление обхода контура (например, по часовой стрелке) и применим к каждому из участков закон Ома для неоднородного участка цепи:



Дата добавления: 2020-10-14; просмотров: 170;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.009 сек.