Этапы химической эволюции

Химическая эволюция - процесс необратимых изменений, приводящий к появлению новых химических соединений - продуктов, более сложных и высокоорганизованных по сравнению с исходными веществами. Эти процессы стали активно и целенаправленно исследовать в 1970-е гг. в связи с изучением проблемы постоянно усложняющихся химических процессов до уровня, способствовавшего возникновению живого вещества на Земле. Интерес к этим процессам восходит к давним попыткам понять, как из неорганической материи возникает органическая, а далее и жизнь. Первым осознал высокую упорядоченность и эффективность химических процессов в живых организмах основатель органической химии Й.Я. Берцелиус (конец XVIII - начало XIX в.). Он установил, что основой лабораторий живого организма является биокатализ. Большое значение каталитическому опыту живой природы придавалось и в XX в. Так, академик Н.Н. Семенов рассматривал химические процессы, протекающие в тканях растений и животных, как своеобразное «химическое производство» живой природы.

Кратко рассмотрим этапы химической эволюции. Вероятно, следует признать, что она началась с появлением простейшего носителя - атома. Согласно концепции Большого взрыва, существующие сейчас, химические элементы возникли в процессе эволюции Вселенной от сверхплотного и сверхгорячего состояния до современного мира звезд и галактик. Предполагается, что первыми образовались простейшие атомы (вернее, их ядра) водорода. Приблизительно через 1 с после Большого взрыва плотность материи уменьшилась до 1 т/см3, температура - до 100 млрд К, а диаметр вырос до 1500 млрд км. Вещество находилось в состоянии полностью ионизированной плазмы, состоящей из нуклонов (протонов и нейтронов) и электронов. Еще через 10 с, когда температура понизилась до 10 млрд К, появились условия для протекания ядерной реакции образования дейтронов - ядер дейтерия (тяжелого водорода).

Однако при этой температуре равновесие данной реакции сильно сдвинуто влево (оно сдвигается вправо только при температуре 1млрд К - примерно через 100 с после Большого взрыва), и дейтроны не могли накапливаться, так как они при этих условиях превращаются в ядра гелия (эта схема вполне удовлетворительно объясняет количество гелия в нашей Вселенной). На дозвездной стадии развития материи ядра других химических элементов не образуются, поскольку плотность и температура расширяющейся Вселенной быстро падают. При этом процесс образования 4Не (цифра слева вверху - относительная атомная масса, т.е. масса атома, выраженная в атомных единицах массы, которая составляет 1/12 массы изотопа углерода с массовым числом 12- 1,6605655(86)10"27 кг), начавшись приблизительно через 2 мин. после Большого взрыва, прекращается уже к концу 4-й минуты. При остывании Вселенной до температуры 3500 К (приблизительно через 1 млн. лет) происходит рекомбинация ядер гелия и оставшихся ядер водорода с электронами: образуются атомы гелия и водорода - исходный материал для межзвездного газа и звездных систем.



Дальнейший синтез химических элементов продолжается в недрах звезд при повышении температуры. В процессе конденсации в протозвезду межзвездного газа, состоящего из водорода и гелия, в результате гравитационного сжатия температура повышается и снова становится возможной реакция образования гелия из водорода. Этот этап характеризуется температурами, не превышающими 20 106 К.

После ядер гелия Не наиболее устойчивыми являются ядра 12С и 16О. Термоядерная эпоха образования таких ядер (Т < 100 млн К) наступает после того, как на первом этапе истощается, «выгорает» водород. В эту эпоху в плотных выгоревших ядрах звезд-гигантов возможно непосредственное образование углерода и кислорода (не атомов, а ядер). Дальнейшее слияние ядер гелия приводит к образованию 20Ne, 24Mg и т.п. Более поздняя ядерная эпоха, когда обеспечивается температура до 1 млрд. К, характеризуется «горением» углерода. При этом образуются ядра вплоть до 27А1 и 28Si. Выше 30 млрд. К в реакцию вступают более тяжелые ядра, начиная с кремния 32Si. В условиях складывающегося при этом термодинамического равновесия синтезируются элементы вплоть до железа и атомы близких ему элементов, ядра которых являются самыми стабильными ядрами. При этом достигается минимум энергии всей системы, и более тяжелые ядра не синтезируются. Получение элементов с большими атомными номерами осуществляется по другому механизму - последовательный захват ядрами нейтронов и последующий 3-распад. В подобных процессах в качестве самого тяжелого может получиться нуклид l81Bi. Ядра, более тяжелые, чем 181Bi, синтезируются во время взрывов новых и сверхновых звезд в условиях огромной плотности нейтронных потоков, когда возможен захват ядрами нейтронов не по одному, а группами.

Можно с большой долей вероятности предположить, что в Солнечной системе сменилось несколько этапов ядерного синтеза. Сравнение химического состава Солнца и химического состава звездного вещества позволяет заключить, что все описанные выше процессы синтеза ядер имели место в Солнечной системе, причем первоначальная масса образовавшейся в нашем участке Галактики звезды превышала критическую (равную 1,44 массы Солнца), и она оказалась неустойчивой. Под действием гравитационного притяжения протозвезда сжималась, ее температура повышалась, обеспечивая первые этапы ядерного синтеза. Выделяющаяся при этом энергия оказалась слишком велика, вследствие чего через некоторое время происходил взрыв и образовывались ядра самых тяжелых элементов. Масса звезды уменьшалась за счет выброса вещества. Этот процесс повторялся неоднократно до тех пор, пока масса центральной массивной звезды не стала ниже критического предела. Такой механизм обеспечивает интервал времени, достаточный для химической, геолого-географической и биологической эволюции.

В настоящее время многие исследователи полагают, что планеты Солнечной системы образовались из солнечной материи, выброшенной из Солнца, когда оно становилось сверхновой звездой. Охлаждение образовавшейся вокруг Солнца дискообразной газовой туманности дало возможность для соединения атомов в молекулы, т.е. началась собственно химическая эволюция.

Молекулы не могли образоваться при звездных температурах, когда большинство атомов существует в виде многозарядных ионов (например, в солнечной короне при 1 млн. К атомы железа являются ионами Fe13+). Двухатомные молекулы обнаружены в спектрах лишь наиболее холодных звезд с температурой поверхности 2000-3000 К (оксиды Al, Mg, Ti, Zr, С, Si и некоторые другие двухатомные молекулы с наиболее прочной химической связью). При этом в межзвездном пространстве присутствует большое количество молекул, в том числе достаточно сложных. Предполагается, что состав указанных молекул соответствует составу первых молекул, образовавшихся в результате охлаждения звездного вещества. Найдены и другие молекулы, но в значительно меньших количествах.

Когда температура протопланетной туманности понизилась до 1000-1800 К, начали конденсироваться, т.е. становиться жидкими и твердыми, самые тугоплавкие вещества, в частности образовались капельки железа, а впоследствии и силикатов (солей кремниевых кислот).

При температурах 400-1000 К конденсировались другие металлы и их соединения с серой и кислородом. Застывшие капли силикатного материала в виде хондр (маленьких сферических тел) образовали, по-видимому, при последующем сгущении множество астероидов - первичных тел хондритовых метеоритов. Можно предположить, что в результате дифференциации первичного газа под действием солнечного ветра (истечения плазмы солнечной короны в межпланетное пространство) и градиента температур атомы наиболее легких элементов были отброшены на периферию Солнечной системы и расположенные ближе к Солнцу планеты земного типа возникли путем сгущения наиболее высокотемпературной фракции с повышенным содержанием железа.

Содержание летучих компонентов, которые, вероятно, попали в планетное вещество главным образом в результате адсорбции на пылевых частицах или химических реакций с ними, оказалось очень малым. Поэтому масса гидросферы Земли составляет лишь 0,024 %, а атмосферы - 0,00009 % общей массы Земли.

С формированием Земли как планеты на химическую эволюцию стала оказывать действие эволюция Земли. Это влияние выражалось (и выражается в настоящее время) в изменении концентрационного распределения химических элементов в теле Земли и по ее оболочкам (в атмосфере, гидросфере, коре, мантии, ядре), а также в создании условий (температура, давление) для образования новых веществ.

Конечно, при этом имело место и обратное воздействие. Образование новых веществ и появление возможностей для новых химических процессов вызывали формирование новых геологических образований, например осадочных пород. Таким образом, геологическая и химическая эволюции протекают в значительной степени совместно, взаимно влияя друг на друга. Химическая эволюция привела к появлению жизни. Это произошло благодаря развитию не веществ, а химических систем и процессов, в них происходящих.

 






Дата добавления: 2016-05-30; просмотров: 280;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2017 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.008 сек.