Предмет экологии насекомых 7 глава


Выбор показателя активности, а соответственно, и методики наблюдения, зависит от целей исследования, а также от возможностей наблюдателя. Подчеркнем, что конструирование автоматических приборов далеко не всегда оправдано. Если не ставятся какие–либо специальные цели, то наиболее просто и надежно провести визуальные наблюдения на протяжении 7–10 суток. Даже при круглосуточных наблюдениях для этого достаточно трех сменяющих друг друга наблюдателей.

Изучение суточного ритма невозможно без постоянного контроля за факторами среды. Если работа проводится в полевых условиях, желательно максимально приблизить место метеорологических наблюдений к тому месту, где находятся наблюдаемые насекомые. При этом прежде всего надо обратить внимание на освещенность, влажность и температуру воздуха.

При наблюдениях в лаборатории надо по возможности исключить неконтролируемые факторы, которые могут исказить ритм или даже полностью навязать насекомому ритм своих изменений. В любом случае наблюдаемый объект должен находиться в термостате или в термостатированной комнате. На постоянном уровне желательно поддерживать и влажность. Если объект должен находиться при естественном освещении, то необходимо учитывать разный суточный ход освещенности в зависимости от ориентации окон помещения по странам света. Очень нежелательно попадание на камеру с насекомыми прямых солнечных лучей, которые могут резко повысить температуру внутри нее. При искусственном освещении очень важно быть уверенным в том, что питающий лампу ток достаточно стабилен и не изменяется на протяжении суток.

Крайне важно полностью контролировать ход освещенности. Так, в наших опытах камера с жуками–коровками Coccinella septempunctata L. была освещена лампой, создававшей постоянную освещенность около 2 тысяч лк. В камере было укрытие, куда жуки могли уходить от света. Наблюдения проводились в лаборатории, где окно было почти полностью занавешено и проникавший слабый свет увеличивал днем освещенность камеры не более чем на 10 лк. В таких условиях ритм активности жуков был очень четким и соответствовал местному времени. Однако после полной изоляции лаборатории от света извне всякие проявления ритма тотчас же исчезли.

Наблюдая ритм выхода дрозофил и трихограмм м из куколок, можно убедиться, что достаточно исключительно слабого света в сотые доли люкса, проникающего в термостат через контрольный термометр или сквозь ничтожные щели между дверцей с резиновой прокладкой и корпусом, чтобы полностью исказились результаты эксперимента. Даже при соблюдении всех правил ритм в лаборатории никогда не бывает стабильным и его параметры изменяются изо дня в день. Одна из важнейших причин такой нестабильности – колебания атмосферного давления; другие возможные причины – колебания уровня ионизации воздуха, низко – и высокочастотные колебания электромагнитных полей, инфразвуки, влияние гравитационного поля Луны. Нестабильность ритма иногда связана со спонтанными изменениями физиологического состояния самого объекта.

Известна и другая группа причин, которая может быть значительной помехой при изучении ритмов. В первую очередь следует назвать вибрации и шумы, возникающие в результате деятельности людей (лифты, транспорт, открывание и закрывание дверей и т.д.). Другая причина – какие–либо летучие вещества, появляющиеся в лаборатории, в том числе и табачный дым. В связи с этим желательно изучать ритмы в лабораториях, расположенных в подвальных помещениях, не имеющих окон и возможно реже посещаемых людьми. Лаборатория также должна быть расположена возможно дальше от улиц, насыщенных транспортом.

Иногда для определения факторов, влияющих на ритм насекомых в естественных условиях целесообразно проводить эксперименты в месте обитания насекомых в природе. При этом летающие насекомые находятся в садке, а нелетающие в загоне, огороженном непроходимым для них заборчиком. Садки и загоны располагаются в поле, над ними подвешивают лампы накаливания или электронагреватели. Предусматривается также возможность искусственного затенения садков. В таких экспериментах насекомые находятся почти в естественных условиях, за исключением того, что пространство для их активности ограничено. При помощи ламп, нагревателей и затенения можно в любое время суток изменять освещенность и температуру в нужном направлении.

Распределение активности во времени суток

Традиционное деление насекомых по образу жизни на дневных, сумеречных и ночных далеко не охватывает всего многообразия ритмов. Известны примеры, когда насекомые почти одинаково активны на протяжении двух, а то и всех трех этих периодов. С другой стороны, при изучении ритмов активности, например, дневных насекомых, выявляются существенные различия в их поведении: одни активны только в начале и конце дня, другие – в середине дня.

Это деление тем более приблизительно потому, что каждому виду активности может быть свойствен свой ритм. Следовательно, при изучении ритмики одного насекомого можно получить целый набор нередко самых разнообразных, хотя и характерных для данного вида ритмов. Наконец, в зависимости от физиологического состояния, погоды или сезона ритмика насекомых может существенно и закономерно изменяться. Традиционного деления для подобного анализа ритмов явно недостаточно.

В основу классификации ритмов положены следующие признаки: наличие или отсутствие строгого подразделения периода ритма на время активности и время покоя, а также распределения максимумов: в середине дня, в начале и конце дня, в вечерние сумерки и перед рассветом, в середине ночи. В соответствии с этим можно выделить 12 типов распределения активности в течение суток (рис.6). Они охватывают большинство наблюдаемых ритмов, полный же их охват невозможен по следующим причинам. Во – первых, регистрируемые ритмы, особенно ритм подвижности, нередко представляют собой комплекс из нескольких ритмов. Так, ритм подвижности может отразить одновременно ритмы и поиска пищи, и миграционной активности, и поиска полового партнера, и т.д. В этом случае количество максимумов подвижности может быть больше двух.

Во-вторых, разграничение времени суток, например, рассвета и начала дня, конца дня и сумерек, очень условно. Часто активность, начинающаяся до захода солнца в конце дня, продолжается как сумеречная. Такие ритмы можно описать как переходные между двумя типами. В–третьих, строгой симметрии двух пиков активности в течение суток в природе обычно не бывает. Часто рассветный или утренний максимумы смещаются на более поздние часы и активность насекомого протекает при более высокой освещенности, чем вечером.

Наиболее важно в системе суточных ритмов противопоставление круглосуточной активности и активности, ограниченной определенным временем суток. Приведем крайние примеры, показывающие принцип такого подразделения. Пример круглосуточной активности дают личинки синантропных мух. Они копошатся в субстрате круглые сутки, хотя ночью при более низкой температуре их движения могут наблюдаться реже и быть не столь энергичными, как в середине жаркого дня. Бабочки–траурницы летают днем. Ночью, какова бы ни была температура, бабочки сидят неподвижно. Это пример активности, ограниченной определенным временем суток.

 

Рис.6. Типы суточных ритмов активности насекомых (по В.Б.Чернышеву, 1984): Т – время суток, А – уровень общей или частной активности, Д – день, Н - ночь. Первый столбец сверху вниз: круглосуточная активность (преимущественно дневная, утренне–вечерняя, сумеречно–рассветная и ночная); второй столбец: длительная активность (дневная, утренне–вечерняя, сумеречно–рассветная и ночная); третий столбец: строго дневная, утренне–вечерняя, сумеречно–рассветная и ночная.

Итак, круглосуточная активность может наблюдаться в любое время суток, хотя возможны более или менее длительные нерегулярные паузы. Некоторые круглосуточно активные насекомые могут вообще не обладать суточным ритмом (насекомые, живущие в гниющей древесине, обитатели глубоких слоев почвы и пещер). Однако гораздо чаще максимальная активность приурочена к определенному времени суток.

Круглосуточной активностью обладает большинство личинок насекомых. Активность в любое время суток возможна также у имаго большинства тараканов, термитов, прямокрылых и рабочих муравьев. Эта группа насекомых биологически очень разнородна, однако у всех ее представителей полет, как правило, не является основным средством передвижения, или же они совсем не способны к полету. Свет обычно влияет на активность этих насекомых, но световые пределы, ограничивающие активность, отсутствуют. Их зрение обычно аппозиционное, часто слабо развито. Для данной категории насекомых очень типично или постоянное обитание в укрытиях, где минимальны суточные колебания условий, или непосредственное обитание на пищевой среде (в древесине, на кормовых растениях, трупах, в навозе, в запасах продуктов). Температура тела этих насекомых всегда близка к температуре окружающей среды.

Отметим, что сказанное относится лишь к общей активности и подвижности, частные же виды активности или подвижности имаго этих насекомых могут быть довольно точно ограничены определенным временем суток. Таково, например, пение кузнечиков и саранчовых, лет тараканов, клопов и жуков. Вообще лет насекомых, за редчайшими исключениями, ограничен определенным временем суток. В число таких исключений входит, например, круглосуточный лет самцов непарного шелкопряда. Однако во время полярного дня, когда солнце совсем не заходит, круглосуточно могут летать насекомые многих видов: пчелы, мошки, комары.

Активность, ограниченная определенным временем суток, особенно типична для имаго высокоорганизованных насекомых, таких как двукрылые, перепончатокрылые и бабочки, а также для имаго поденок и стрекоз. Эти насекомые передвигаются в основном или только с помощью полета. Ритм их активности обусловлен ходом освещенности, и световые пределы активности хорошо выражены. Зрение у этих насекомых хорошо развито и относится к разным типам. В целом насекомые, активные лишь в определенное время суток, также биологически очень разнообразны. Для них типично обитание на открытых местах и редкое использование укрытий. Температура их тела благодаря высокой энергии обмена (а у дневных видов также благодаря солнечной радиации) во время активности довольно стабильна и заметно превышает температуру окружающей среды.

Теперь обратимся к другому параметру ритма – приуроченности максимума активности к определенному времени суток. Связь между биологией насекомого и временем его максимальной активности хорошо иллюстрирует таблица 1, составленная Т.Льюисом и Л.Тейлором на основе обширных сборов летающих насекомых в умеренной зоне с помощью всасывающих воздух ловушек.

Таблица 1

Связь между типом питания и временем максимальной активности летающих насекомых (T.Lewis, L.R.Taylor, 1965)

 

Тип питания Процент видов насекомых, летающих
днем в сумерки ночью
Хищники
Листогрызущие
Питающиеся на цветах
Обитающие на разлагающихся субстратах    
Афаги


Из этой таблицы следует, что общее разнообразие форм, летающих днем, гораздо выше, чем сумеречных и ночных. Очевидно, что именно зрение играет основную роль в поисках питания у хищников, фитофагов и насекомых, питающихся нектаром и пыльцой, т.е. у насекомых с основными типами питания. Ночной полет выполняется прежде всего не для поисков пищи, а как миграция, не требующая столь совершенной зрительной ориентации. Формы, питающиеся разлагающимся субстратом, находят его преимущественно по запаху. Отметим, что вечером снижается турбулентность воздуха и повышается его влажность, что более благоприятно для распространения запаха. Большой процент ночных афагов объясняется летом комаров–долгоножек. Как известно, у этих комаров зрение развито относительно слабо и ориентация в полете достигается в значительной степени при помощи осязания. Такой способ ориентации позволяет им летать в любое время суток и даже проникать глубоко в пещеры, где полностью отсутствует свет.

Сравнение ритмов разных видов подвижности и активности

Подвижность является основой практически всех видов активности, поэтому, если подвижность не является круглосуточной, то не будет круглосуточной и активность. Но при типичной для нелетающих насекомых круглосуточной подвижности многие виды их активности могут быть некруглосуточными.

Частный вид подвижности – полет, за редкими исключениями, не бывает круглосуточным. Если насекомое и ползает, и летает, то время лета, как правило, совпадает с наиболее высоким уровнем подвижности. Лет всегда более ограничен освещенностью и температурой, чем ползание.

Питание может быть круглосуточным, особенно при избытке пищи, возникающем при жизни на/ или в пищевом субстрате. Выход из яиц, линьки и особенно вылупление из куколок также часто являются круглосуточными, хотя их максимумы, особенно максимум выхода из куколок, обычно выражены более четко, чем максимум ритма подвижности. В ряде случаев ритм выхода из куколок отличается удивительной четкостью. Резко ограничены во времени спаривание и откладка яиц, что, по-видимому, связано с возможностями работы рецепторов, участвующих в поиске партнера или отыскании подходящего субстрата.

Сравним вкратце распределение максимумов подвижности и разных видов активности в течение суток. Ясно, что ритм подвижности является основой всех прочих ритмов. Ритмы разных видов активности, как правило, соответствуют ритму подвижности, составляя как бы его фрагменты. Только в редких случаях ритм какого-либо вида активности оказывается противоположным по фазе ритму подвижности, как, например, ритмы питания ряда гусениц. Максимумы спаривания чаще имеют место в начале или в конце периода подвижности, максимумы откладки яиц обычно приурочены к вечеру как у дневных, так и у сумеречных форм, но иногда возможны и утром. Максимум выхода личинок из яиц обычно совпадает со временем начала активности этих личинок. Аналогичным образом, максимум вылупления из куколок совпадает с началом времени активности имаго. Соответственно, дневные насекомые выходят из куколок утром, а ночные – вечером. Максимумы лета на свет наблюдаются несколько позже, чем максимумы активности в садках. Питание, как правило, предваряет: и миграционную активность, и лет на свет.

Вариации ритмов активности

Было бы биологически неоправданным, если бы ритмы активности, подобно жесткой программе автомата, повторялись всегда в одном и том же варианте, независимо от состояния насекомого, его потребностей и конкретных условий. В природе картина ритма активности каждого дня во многом похожа одна на другую и в то же время бесконечно изменяется. Причины вариаций заключаются в изменении или самого насекомого, или условий среды. Эти вариации распространяются и на уровень четкости (степень выраженности) ритма, и на положение пиков активности во времени.

Отметим, что индивидуальная изменчивость ритма может быть обусловлена генетически. Так ритмы подвижности разных особей жука Тrоqoderma glabrum Herbst. в общем довольно сходны. Однако, у одной самки был обнаружен совершенно необычный ритм. Если все жуки становились активными в 6–8 ч утра, то эта самка начинала бегать с 2 ч ночи. Настолько же раньше прекращалась ее активность в вечернее время. Широко известно, что люди по предпочитаемому ими времени работы могут быть разделены на "жаворонков", "голубей" и "сов". По–видимому, то же наблюдается у некоторых стрекоз, одни особи которых предпочитают летать в первой половине дня, а другие – во второй. Впрочем, подобная дифференциация может быть связана с возрастом имаго. Так, у многих дневных насекомых зрелые имаго летают ближе к середине дня, а молодые, недавно выведшиеся из куколок – больше в начале и конце, что, скорее всего, связано с их меньшей устойчивостью к сухости воздуха и ультрафиолетовому излучению. У жуков–кожеедов Trogoderma glabrum уровень подвижности молодых, еще недостаточно окрепших имаго очень низок, ритм же старых особей нечеток и размыт во времени. Такая картина изменений ритма с возрастом типична для многих насекомых.

Естественно, что ритмы меняются в зависимости от стадии развития. Ритмы у личинок, как правило, выражены менее четко, чем у имаго, даже если образ жизни тех и других сходен. Ритм может меняться на протяжении личиночного развития, вплоть до смены дневной активности на ночную, как отмечается у гусениц некоторых волнянок.

Ритмы активности самцов и самок многих видов могут значительно различаться. Часто такие различия легко объяснимы несовпадением ритмов разных видов активности – спаривания или откладки яиц. В других случаях это связано с малой подвижностью самок. Различия в ритмике вилуплення из куколок могут служить изоляционным барьером, предотвращающим близкородственные скрещивания. Правда, например, у трихограммы самцы выходят из куколок несколько раньше самок, но остаются тут же на зараженных кладках и поджидают самок.

При недостатке пищи и воды существенно повышается уровень подвижности насекомых, хотя в основном ритмика при этом почти не нарушается: не происходит сдвига фазы и максимумы остаются в том же положении. Однако активность из ограниченной во времени суток может стать даже круглосуточной. Такие изменения ритма легко пронаблюдать, например, у сверчков, ряда жуков, комаров и мух при голодании и жажде.

Конечно, вариации ритмов возникают не только из-за изменений состояния насекомого, но также и под воздействием внешних факторов. Например, в пасмурную погоду или в тени леса максимумы активности приближаются к середине дня. Под влиянием лунного света максимумы активности ночных насекомых сдвигаются к середине ночи. Низкая температура чаще всего сказывается на активности, протекающей перед рассветом и в ранние утренние часы. У дневных форм чрезмерно высокая температура приводит к появлению и дальнейшему углублению минимума активности в середине дня вплоть до полной потери активности в это время.

Ритмы изменяются также и в зависимости от сезона, географической широты и высоты над уровнем моря. Принцип изменения ритмов здесь один и тот же: при холоде активность концентрируется в середине дня, а в жару сдвигается на вечерние и ранние утренние часы. На большой высоте над уровнем моря активность в середине дня может снижаться также и в связи с высоким уровнем ультрафиолетовой радиации (В.И.Чикатунов, 1979).

Очень интересный опыт, поясняющий в какой-то мере один из возможных механизмов сезонного изменения ритма был поставлен Дж. Труменом (J.Truman, 1973). В его опытах куколки дубового шелкопряда были выращены при температурах 25° и 12° С. Затем наблюдали поведение бабочек при одинаковой температуре 25° . Оказалось, что, несмотря на одинаковую температуру, самцы, выращенные при 25°, становились подвижными примерно через 5 ч после выключения света, т.е. в середине ночи. Самцы же, выращенные при низкой температуре, имели очень нечеткий ритм и начинали летать уже через 1,3 ч после выключения света, т.е. в начале ночи. Самки этой же бабочки в обеих сериях показали одинаковый ритм, однако время выделения ими феромона точно соответствовало времени активности самцов своей серии. Таким образом, сдвиг фазы ритма может зависеть не только от тех конкретных условий, в которых находится в данный момент насекомое, но и от тех, в которых протекало его развитие. Наблюдавшийся сдвиг фазы ритма у шелкопряда явно носил адаптивный характер. Более раннюю активность самцов, выросших в холоде, и размытый ритм можно рассматривать как приспособление к холодным весенним или осенним ночам.

Подчеркнем, что исходно сумеречные и ночные виды нередко бывают активными и в дневное время, исходно же дневные виды, за редчайшими исключениями, никогда не летают ночью (кроме ночного времени в течение полярного дня). Это, по-видимому, связано с большими возможностями типичного для ночных форм суперпозиционного зрения. У нелетающих насекомых зрение обычно играет меньшую роль, поэтому сдвиги фазы ритма возможны в любых направлениях.

3. ЭНДОГЕННЫЙ СУТОЧНЫЙ РИТМ

Проявления эндогенного ритма в природе и лаборатории

Внешние факторы резко влияют на уровень активности насекомых и могут быть непосредственной причиной наблюдаемого ритма. Однако далеко не всегда ритм активности можно объяснить только воздействием внешних факторов. Легко понять причины синхронности лета открыто живущих насекомых, явно реагирующих на уровень освещенности. Если же насекомые во время покоя пользуются укрытиями или зарываются глубоко в почву, объяснить одновременность их вылета гораздо сложнее.

Так, в Туркмении, при сборе нами насекомых на свет, прилетавшие тысячами мелкие жуки–чернотелки зарывались в землю около ловушки. Весь день на поверхности не было ни одного жука. Вечером же, когда наступало время их лета, поверхность земли шевелилась и через несколько минут становилась черной от полчищ жуков. Эти жуки могли зарываться на глубину до 1 м. Следовательно, трудно предположить, что их выход на поверхность был вызван определенной температурой или освещенностью, тем более, что поверхность земли около ловушки была дополнительно освещена кварцевой лампой.

Крупные нелетающие жуки–чернотелки Trigonoscelis gigas Rtt. выходят на поверхность песка в пустыне только утром и вечером. Нагрев поверхности песка в середине дня доходит до 70°, что для них смертельно опасно. Как в середине дня, так и ночью жуки находятся на глубине до 25–30 см, где температура почти постоянна и обычно не превышает 30°. Поэтому их выход на поверхность навряд ли может быть связан с изменениями температуры или освещенности. Более того, утром жуки вынуждены проходить сквозь остывший за ночь слой песка, чтобы попасть на только что начавшую нагреваться поверхность. Перед вечерним же максимумом активности, наоборот, они проходят сквозь исключительно горячий слой, в то время как поверхность становится прохладнее. Если бы жуки реагировали на едва доходящую в глубину волну тепла или охлаждения, они опаздывали бы с выходом на несколько часов и погибали. Наиболее приемлемое здесь объяснение – это наличие у жуков эндогенного ритма, т.е. спонтанно работающих внутри организма биологических часов.

Итак, эти и многие другие наблюдения показывают, что ритмическое поведение насекомых далеко не во всех случаях может быть объяснено только непосредственной реакцией на изменения таких факторов, как освещенность, температура, влажность и т.д. Доказать же существование эндогенного суточного ритма было возможно только в лаборатории при контролируемых и стабильных внешних условиях. Первые такие эксперименты были проведены еще в начале XYIII в. с растениями мимозы. Эти растения, находившиеся в постоянной и полной темноте, поднимали и опускали листья соответственно времени суток. Спустя более чем 100 лет, было показано, что период такого ритма у растений, находящихся в постоянных условиях, несколько отличается от 24 ч, а, следовательно, ритм растения постепенно расходится по фазе с местным временем. Это было первым сообщением о циркадианных (околосуточных) ритмах. Наличие такого ритма, не совпадающего с местным временем, является наиболее веским доказательством его эндогенности и полной независимости от суточного хода каких-либо неконтролируемых внешних факторов, которые могли бы проникнуть в лабораторию.

Впервые среди животных, по-видимому, именно у насекомых были обнаружены суточные эндогенные ритмы. Первое наблюдение было проведено на жуках–щелкунах, которые, находясь в плотно закрытой коробке, не двигались днем, но были подвижны ночью (E.Perris, 1853). Эта работа не привлекла особого внимания и только в 1896 году Р.Дюбуа (R.Dubois, 1896) описал у привезенных из Вест-Индии щелкунов–кукухо четкий суточный ритм свечения в темноте при постоянной температуре. На два года ранее была опубликована работа А.Кизеля (A.Kiesel, 1894), изучавшего движение пигмента в глазах совки-гамма Plusia gamma L. Известно, что при освещении ночью глаз ночной бабочки ярко блестит, а днем имеет более тусклую окраску. В опытах Кизеля при содержании бабочек в постоянной темноте окраска их глаз менялась в течение суток, причем этот ритм сохранялся на протяжении нескольких недель.

В начале XX в. были обнаружены суточные изменения окраски одного из видов палочников, а также опубликовано первое сообщение о способности пчел в результате дрессировки прилетать за кормом в определенное время суток. Стало ясно, что у пчел имеется "чувство времени", которое они используют при посещении цветов, выделяющих нектар в определенное время суток. В 1914 году были сконструированы первые актографы-приборы, позволяющие вести длительную автоматическую запись подвижности различных животных (J.S.Szymanski, 1914). С этого момента стало известно о сохранении ритма в постоянных условиях у десятков видов насекомых.

До настоящего времени высказываются сомнения, что наблюдающаяся ритмичность поведения в постоянных условиях температуры и освещения всегда основана на эндогенном ритме. Сквозь стены лаборатории может проникать много факторов, имеющих суточную периодичность. Как отмечалось выше, насекомые могут реагировать на такие факторы как атмосферное давление, геомагнитные поля, инфразвуки, электромагнитные колебания.

Основным доказательством существования эндогенного ритма, как отмечалось выше, считается обычно наблюдающееся превращение суточного (24–часового) ритма в циркадианный, который не может быть синхронизирован со временем суток, а следовательно, и циклами геофизических факторов. Здесь просматривается аналогия с часами, сделанными человеком, которые практически всегда спешат или отстают и, таким образом, постепенно расходятся с местным временем, если их ход не корректируется внешними сигналами. Другими подтверждениями этому служат сохранение суточной ритмики у дрозофил при наблюдении в лаборатории на Южном полюсе, где почти все факторы не могут иметь суточной периодичности, а также отсутствие подстройки ритма насекомых находящихся в постоянных условиях освещения и температуры, после их перевозки по широте в зону другого часового пояса.

В пользу явной эндогенности ритма свидетельствует и то, что при регулярной смене света и темноты в суточном режиме в лаборатории активность насекомых нередко предваряет эти изменения условий, а также определенная инерция, которая обычно наблюдается при инвертировании на 180° суточного режима условий (например, при освещении ночью и затемнении днем).

Экологическое значение эндогенного ритма

В природе ритм насекомого, как правило, складывается из двух компонентов: эндогенного ритма и непосредственных реакций на изменения среды (экзогенного ритма). Соотношение этих компонентов различно в зависимости от вида насекомого и наблюдаемого поведения. Легче всего обнаружить эндогенный ритм у такого насекомого, активность которого связана с необходимостью изменения среды обитания: выходом из укрытий, почвы, из воды в воздушную среду, из слоя ила в водную среду и т.д. Если насекомое не меняет среду на протяжении определенного длительного периода, его эндогенный ритм слабо выражен или вообще не проявляется. Кроме того, эндогенные ритмы более типичны для насекомых тропического и субтропического происхождения, чем для насекомых умеренной зоны, а, тем более, арктической, где насекомое вынуждено ловить каждый момент благоприятных для активности условий.

Приведем некоторые примеры. Эндогенные ритмы четко выражены у многих тараканов и жужелиц, в период покоя использующих укрытия, и почти не проявляются у долгоносиков, все время находящихся в кронах деревьев. Лишь в редких случаях эндогенные ритмы обнаруживаются у личинок, постоянно обитающих в пищевой среде, например у личинок мух и личинок жуков–кожеедов, а также у гусениц, постоянно живущих на растениях. С другой стороны, эндогенный ритм легко выявляется в поведении гусениц подгрызающих совок, уходящих днем в почву или же у некоторых гусениц, днем скрывающихся в дуплах деревьев.

Как правило, строго ритмичен и явно подчиняется эндогенному ритму вылет имаго муравьев из муравейника, поведение же рабочих особей, по–видимому, определяется только внешними условиями. Ритм выхода насекомых из куколок почти всегда сохраняется в постоянных условиях, а следовательно, является в своей основе эндогенным. Куколки всегда находятся в более или менее защищенных местах и выход из них насекомых можно рассматривать как смену среды обитания.

Итак, в тех случаях, когда внешние сигналы времени трудно воспринимать, насекомые пользуются эндогенным ритмом как часами, чтобы приурочить свою активность к наиболее благоприятному времени суток. Эндогенный ритм, управляя чувствительностью рецепторов и подготавливая насекомых к выходу лишь в определенное время суток, препятствует их реакции на несвоевременное и "провокационное" изменение условий.

Часто считается, что ритм помогает выходить из укрытий при наиболее благоприятной для данного насекомого влажности воздуха. Действительно, существует прямая корреляция между способностью сохранять влагу и временем активности насекомых. Неспособность сохранять влагу должна приводить к сумеречному и ночному образу жизни. Однако во влажных субтропиках ритмы активности всех насекомых принципиально не отличаются от таковых в других районах, хотя влажность здесь держится на высоком уровне круглосуточно.

Можно предположить, что эндогенный ритм позволяет насекомым "предвидеть" изменения всего комплекса условий, как абиотических, так и биотических, и оптимально их использовать. Способствуя активности разных видов в разное время, он создает экологические разграничения видов во времени.



Дата добавления: 2016-06-29; просмотров: 1909;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.064 сек.