Типы трансформаторов тока.


Измерительные трансформаторы тока

Общие сведения.

Измерительные ТТ предназначены для уменьшения первичных токов до значений, наиболее удобных для подключения измерительных приборов, реле защиты и устройств автоматики. В установках высокого напряжения ТТ также служат для изоляции измерительных приборов и реле от цепей высокого напряжения, что позволяет унифицировать конструкции вторичных приборов и обеспечивает безопасность эксплуатации.

ТТ характеризуются номинальным первичным током I (стандартная шкала номинальных первичных токов включает токи 1…4000 А) и номинальным вторичным током I, который принят равным 5 или 1 А. Для получения величины первичного тока показания амперметров умножаются на коэффициент трансформации ТТ (Ктт = I/I).

ТТ различаются:

- по роду тока - переменного и постоянного;

- по числу витков первичной обмотки – одновитковые и многовитковые;

- по классу точности (по допускаемым значениям погрешностей) 0,2; 0,5; 1; 3; 5; 10;

- по месту установки – шинные, проходные, встроенные, камерные;

- по материалу изоляции обмоток – фарфоровая, литая эпоксидная, бумажномаслянная;

- по роду установки – для внутренней и наружной.

С помощью измерительных трансформаторов: тока – ТТ, напряжения – ТН в отличие от силовых трансформаторов, преобразующих мощность (P = U×I – одновременно ток и напряжение) стремятся трансформировать в отдельности ток (ТТ) и напряжение (ТН), хотя последнее достаточно сложно реализовать с помощью электромагнитных устройств. Отличительными особенностями ТТ и ТН является количество витков первичное обмотки: минимальное у ТТ для избежания падения напряжения в первичной обмотке – иначе будет трансформироваться и напряжение; максимальное – у ТН для создания наибольшего сопротивления первичной обмотки – иначе будет трансформироваться и ток. Режим работы вторичных обмоток: у ТТ – режим, близкий к КЗ, для минимизации вторичного напряжения при значительном токе; у ТН – режим, близкий к холостому ходу, для минимизации вторичного тока при стабильном напряжении.

Первичная обмотка ТТ включается в сеть последовательно (врезается в токопровод), а ТН – параллельно. В таком же порядке подключаются измерительные приборы и реле к выводам вторичной обмотки ТТ и ТН.

Типы трансформаторов тока.

Обозначение типа ТТ: “T” - токовый трансформатор, “К” - для КРУ (ТПЛК, ТЛК, ТШКЛ), “П” - проходной или для крепления на пакете плоских шин (ТШЛП), “Ш” – шинный, “O”- одновитковый (стержневой) или опорный (ТОЛ), “Ф” – с фарфоровой изоляцией, “Л” – с литой изоляцией, “B”- встроенный (ТВ, ТВГ), или втулочный, или с воздушной изоляцией (ТШВ), “У”- У-образная первичная обмотка, или усиленный, или для районов с умеренным климатом (если У стоит после цифры), “Н” – для наружной установки, “З” – с обмотками звеньевого типа, “Р” – с рымовидными обмотками или с разъемным магнитопроводом, “М” – маслонаполненный, или модернизированный, “Г” – генераторный, “С” – специальный, “T” – для встраивания в силовые трансформаторы или автотрансформаторы.

Буквы после первой “Т” в специальных ТТ обозначают: “НП” – нулевая последовательность (для контроля изоляции в сетях с изолированной и компенсированной нейтралью), “З” – для защиты от замыканий на землю в сетях с глухозаземленной нейтралью.

Дополнительные цифробуквенные обозначения:

Первое число – класс напряжения (КВ); вторая буква А или В – категории внешней изоляции по длине пути утечки; третья цифра 1 - для работы на открытом воздухе, 2 – для работы в помещениях со свободным доступом наружного воздуха, 3 – для работы в закрытых помещениях с естественной вентиляцией; третья цифра римская 1 или 4 – обозначение габарита или конструктивного варианта. Во встроенных ТТ после римских цифр приводится коэффициент трансформации в виде обыкновенной дроби.

Конструкции ТТ.

Распределительные устройства (РУ) до 35 кВ выполняются как правило закрытыми и в этих РУ используются ТТ для внутренней установки. В РУ напряжением 35 кВ и выше применяются ТТ наружной установки. ТТ внутренней и наружной установок отличаются выполнением внешней изоляции.

Обычный ТТ состоит из магнитопровода, первичной и вторичной обмоток.

В каждую фазу трехфазной сети устанавливает отдельный ТТ. В зависимости от числа витков первичной обмотки различают одновитковые и многовитковые ТТ.

Одновитковые ТТ.

Получили применение три характерные конструкции одновитковых ТТ: стержневые, шинные и встроенные. Стержневые ТТ изготавливают для номинальных напряжений до 35 кВ и первичных токов 400…1500 А. Шинные ТТ используют при напряжениях до 20 кВ и первичных токах до 24000 А. Встроенные ТТ устанавливают на вводах 35 кВ и выше масляных баковых выключателей и силовых трансформаторов.

Стержневые ТТ типа ТПОФ (токовый проходной, одновитковый, с фарфоровой изоляцией) и ТПОЛ (то же, но при с литой изоляцией) используется как проходные изоляторы при переходе цепи из одного помещения в другое (рис.1а).

Применение литой эпоксидной изоляции позволяет значительно упростить конструкцию и технологию произв-ства. На рис. 1.б показан разрез трансформатора ТПОЛ-10.первичной обмоткой служит прямолинейный стержень 1 с зажимами на концах. На стержень поверх изоляции надеты два кольцевых магнитопровода 2 со вторичными обмотками, независимыми друг от друга. Магнитопроводы вместе с первичной и вторичными обмотками залиты эпоксидным компаундом и образуют монолитный блок 3 в виде проходного изолятора. Блок снабжен фланцем 4 из силумина с отверстиями для крепежных болтов. Зажимы вторичных обмоток 5 расположены на боковом приливе изоляционного блока.

В шинных ТТ в качестве первичной обмотки используют токопроводящую шину или пакет шин соответствующего присоединения. Магнитопровод, имеющий специальный проем для пропуска шин, вместе со вторичными обмотками изолируется фарфором (ТПШФ-рис.2а) или заливается эпоксидным компаундом (ТШЛ).

Магнитопроводы 1 и 2 со вторичными обмотками (рис.2.б) трансформатора типа ТШЛ-20 (токовый, шинный с литой изоляцией для напряжения 20 кВ) залиты эпоксидным компаундом и образуют изоляционный блок 3. Блок соединяется с основанием 4, имеющим приливы 5 для крепления трансформатора. Проходное отверстие с размерами 200´200…250´250 мм2 рассчитано на установку двух шин корытообразного сечения. Зажимы 6 вторичных обмоток расположены над блоком.

Первичной обмоткой встроенных ТТ является токоведущий ввод выключателя или силового трансформатора. Внешней изоляцией магнитопровода со вторичными обмотками служит изоляция самих вводов названных аппаратов. Поэтому, применение встроенных ТТ дает большой экономический эффект.

Вторичные обмотки встроенных ТТ выполняют с ответвлениями, позволяющими подобрать витков и, следовательно, коэффициент трансформации в соответствии с рабочим током цепи. Вторичная обмотка токового трансформатора типа ТВ-35, встроенного в масляный выключатель МКП-35 (рис.3), имеет пять выводов и обеспечивает четыре различных коэффициента трансформации, приведенные в таблице.

 

На вводах аппаратов, как правило, устанавливаются несколько магнитопроводов, вторичные обмотки которых можно соединить последовательно и параллельною при последовательном соединении вторичных обмоток коэффициент трансформации не изменяется, так как пропорционально изменяется число первичных и вторичных витков. Вторичный ток сохраняется, а вторичная ЭДС удваивается, что дает возможность увеличить в два раза вторичную мощность. Для встроенных ТТ это важно, так как они удалены от реле и измерительных приборов и поэтому сопротивление соединяющих проводов достаточно велико. При первичных токах до 100 А вторичные обмотки соединяются параллельно, что позволяет изменить коэффициент трансформации и удвоить величину вторичного тока. Вторичные обмотки имеют также отпайки, которые также позволяют небольшом диапазоне регулировать коэффициент трансформации. При уменьшении числа витков вторичной обмотки снижается коэффициент трансформации, что вызывает рост вторичного тока.

Погрешности встроенных ТТ больше погрешностей стержневых и шинных трансформаторов, так как из-за значительного диаметра кольцевого магнитопровода, определяемого диаметром вода, длинна его и, следовательно, сопротивление магнитной цепи оказываются весьма большими. Также на величине сопротивления магнитной цепи сказывается воздушный зазор между магнитопроводом и токоведущим стержнем.

Многовитковые ТТ.

при малых первичных токах (до 400 А) для получения достоверной информации о величине тока приходится применять многовитковую первичную обмотку. Наличие нескольких витков в первичной обмотке усложняет конструкцию трансформатора, так как при этом возникают дополнительные трудности в обеспечении надежной изоляции и механической прочности.

Для напряжений 6-10 кВ изготавливают катушечные и петлевые ТТ с эпоксидной изоляцией. Трансформатор типа ТКЛ-3 (токовый, катушечный с литой изоляцией на напряжение 3 кВ) рассчитан на первичный ток 5...600 А и имеет один сердечник. Первичная и вторичная обмотки этого ТТ выполнены в виде катушек, концентрически расположенных на сердечнике (рис.4).

Петлевой ТТ типа ТПЛ-10 предназначен для напряжения 10 кВ и отличается от трансформатора ТКЛ конструкцией первичной обмотки. Первичная обмотка трансформатора ТПЛ выполнена в форме петли (рис.5). Петлевые трансформаторы типа ТПФМ (модернизированный) имеет фарфоровую изоляцию (рис.6).

Технологичные и более прочные трансформаторы с литой изоляцией постепенно вытесняют аппараты с фарфоровой изоляцией.

Многовитковые ТТ для напряжения 35-330 кВ наружной установки изготавливают в фарфоровом кожухе с масляным заполнением. На рис.7 показаны общий вид (а) и разрез (б) трансформатора ТФН (токовый, фарфоровая изоляция, наружная установка). Кольцевые магнитопроводы 12 выполнены из ленточной стали, на которые навиваются вторичные обмотки. Первичная обмотка 11 из многожильного провода проходит через отверстия магнитопроводов и концы ее выводятся наверх. Такую своеобразную конструкцию обмоток называют звеньевой или восьмерочной. Первичная обмотка состоит из двух секций, которые с помощью переключателя могут быть соединены последовательно или параллельно, что вызывает соответственно рост вторичной мощности или изменение коэффициента трансформации. Изоляция первичной обмотки, а также магнитопроводов со вторичными обмотками выполнена из кабельной бумаги. Обмотки и магнитопроводы помещаются в фарфоровый кожух 13, заполненный маслом.

При напряжениях сети выше 330 кВ используются каскадные ТТ, состоящие из двух ступеней – верхней 1 и нижней 2 (рис.8), каждая из которых является конструктивно самостоятельным элементом, аналогичным ТТ типа ТФН, и рассчитана на половину номинального напряжения. Ко вторичной обмотке верхней ступени присоединяется первичная обмотка трансформатора нижней ступени, имеющего 4-5 вторичных обмоток. Таким образом, в каскадном ТТ применены две последовательные трансформации, что приводит к некоторому увеличению погрешностей.

С ростом номинального напряжения стоимость ТТ. возрастает примерно пропорционально квадрату напряжения, в основном за счет изоляции стоимость двухступенчатого трансформатора приблизительно в 2 раза меньше, чем одноступенчатого.

В связи с повышением номинального напряжения до 1150 кВ и выше представляется целесообразным представляется целесообразным переход на ТТ с оптико- электронной системой. В этих датчиках тока вторичная обмотка не имеет непосредственного контакта с первичной, а передача информации производится через оптический канал. Однако вследствие сложности такие системы не получили пока широкого применения.

 



Дата добавления: 2016-06-22; просмотров: 15349;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.01 сек.