МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ КОНТРОЛЬНЫХ РАБОТ


В соответствии с учебным планом по курсу физики, студент дистанционной формы обучения должен выполнить ряд контрольных работ, первая из которых охватывает следующие разделы физики: «Механика», «Статистическая физика и термодинамика». При выполнении контрольных работ необходимо соблюдать следующие правила:

 

1. Номера задач, которые студент должен включить в свою контрольную работу, следует определить по таблице вариантов.

2. Контрольная работа может быть выполнена как рукописно в тетради, так и набрана в электронном виде с последующей распечаткой.

3. Контрольную работу следует выполнять аккуратно, оформляя каждую задачу с новой страницы.

4. Условия задач своего варианта переписывать полностью, а заданные физические величины выписывать отдельно; при этом все численные величины должны быть представлены в одной системе единиц (СИ).

5. Для пояснения решения задачи, где это нужно, сделать чертеж.

6. Решение задач и выбор используемых при этом формул следует сопровождать пояснениями.

7. В пояснениях к задаче необходимо указывать основные законы и формулы, на использовании которых базируется решение данной задачи.

8. При получении расчетной формулы, которая нужна для решения конкретной задачи, приводить ее вывод.

9. Решение задачи рекомендуется сначала сделать в общем виде (в буквенных обозначениях), давая при этом необходимые пояснения.

10. Вычисления следует проводить путем подстановки заданных числовых значений в расчетную формулу.

11. Проверить единицы полученных величин по расчетной формуле, тем самым подтвердив ее правильность.

12. В контрольной работе следует указывать учебники и учебные пособия, которые использовались при решении задач.

13. Результаты расчета следует округлять.

 

Правила округления следующие:

– при сложении и вычитании все слагаемые округляют так, чтобы они не имели значащих цифр в тех разрядах, которые отсутствуют хотя бы в одном из слагаемых;

– при умножении и делении исходные данные и результат округляют до такого числа значащих цифр, сколько их содержится в наименее точном числе;

– при возведении в степень в результате следует сохранять столько значащих цифр, сколько их содержится в числе, возводимом в степень;

– при извлечении корня в окончательном результате количество значащих цифр должно быть таким, как в подкоренном выражении;

– в промежуточных вычислениях следует сохранять на одну цифру больше, чем рекомендуют правила, приведенные выше.

 

Значащими цифрами называют все цифры, кроме нуля, и ноль, если он стоит в середине числа или является представителем сохраненного десятичного разряда.

Контрольные работы, представленные без соблюдения указанных правил, а также работы, не относящиеся к требуемому варианту, засчитываться не будут.

При отсылке работы на повторное рецензирование обязательно представлять работу с первой рецензией.

Белорусский национальный технический университет Международный институт дистанционного образования Кафедра «Информационные системы и технологии»   Контрольная работа по «Физике» за ___ семестр Вариант _____     Выполнил: студент _ курса, группы ________ ФИО_________________________ дом. адрес____________________ Проверил: ФИО преподавателя____________   Минск 20_____
ПРАВИЛА ОФОРМЛЕНИЯ ТИТУЛЬНОГО ЛИСТА

 

Варианты контрольной работы

 

Таблица 1

 

Варианты Номера задач

 

Задачи КОНТРОЛЬНой РАБОТы И
для самостоятельного решения

Электростатика

Сила электростатического взаимодействия двух точечных зарядов q1 и q2 в вакууме равна:

где r – расстояние между зарядами, коэффициент пропорциональности , где электрическая постоянная. Если же заряды находятся в некоторой среде с диэлектрической проницаемостью , сила электростатического взаимодействия станет равной:

.

Вектор напряженности электрического поля (силовая характеристика поля), равен

,

где сила, действующая со стороны электрического поля на точечный пробный заряд , помещенный в рассматриваемую точку поля, к величине этого заряда.

Принцип суперпозиции электрических полей: напряженность электрического поля, созданного несколькими электрическими зарядами, равна геометрической сумме напряженностей полей, созданных каждым i-м зарядом в отдельности

.

Согласно теореме Гаусса поток вектора напряженности сквозь любую замкнутую поверхность равен алгебраической сумме электрических зарядов, заключенных внутри этой поверхности:

.

Теорема Гаусса позволяет найти напряженность поля, созданного такими заряженными телами как:

· поле бесконечно длинной нити где – линейная плотность заряда на нити, d – расстояние от нити;

· поле нити конечной длины где φ – угол между направлением нормали к нити и радиус-вектором, проведенным из рассматриваемой точки к концу нити;

· поле бесконечной плоскости где – поверхностная плотность заряда;

· поле, заряженного шара где r – расстояние от центра шара, радиус которого R, причем r>R.

Потенциалом электростатического поля (энергетическая характеристика поля) называют физическую величину φ, равную отношению потенциальной энергии взаимодействия W пробного точечного электрического заряда, помещенного в рассматриваемую точку поля, с электростатическим полем, к величине этого заряда:

.

Потенциал электростатического поля, созданного точечным зарядом q или равномерно заряженным шаром, на расстоянии r от заряда (центра шара):

,

в случае полого шара, потенциал всех его внутренних точек одинаков и равен потенциалу точек расположенных на его поверхности.

При наложении электрических полей их потенциалы алгебраически складываются.

Работа , совершаемая кулоновскими силами при перемещении точеного заряда q в однородном электростатическом поле, равна уменьшению потенциальной энергии взаимодействия Wпот этого заряда с полем:

.

Потенциальная энергия системы из N зарядов равна:

,

где φi – потенциал, создаваемый в той точке поля, в которой находится заряд qi, всеми зарядами, кроме i-го.

 

301. Тонкая шелковая нить выдерживает максимальную силу натяжения T = 10 мН. На этой нити подвешен шарик массы m = 0,6 г, имеющий положительный заряд q1= 11 нКл. Снизу в направлении линии подвеса к нему подносят шарик, имеющий отрицательный заряд q2=-13 нКл. При каком расстоянии l между шариками нить разорвется?

302. По кольцу могут свободно перемещаться три положительно заряженных шарика, несущие заряды: q1 на одном шарике и q2 на каждом из двух других. Чему равно отношение зарядов q1 и q2, если при равновесии дуга между зарядами q2 составляет 60о?

303. Отрицательный точечный заряд Q расположен на прямой, соединяющей два одинаковых положительных точечных заряда q. Расстояния между отрицательным зарядом и каждым из положительных относятся между собой, как 1:3. Во сколько раз изменится сила, действующая на отрицательный заряд, если его поменять местами с ближайшим положительным?

304. На двух одинаковых капельках воды находится по одному лишнему электрону, причем сила электрического отталкивания капелек уравновешивает силу их взаимного тяготения. Каковы радиусы капелек?

305. Два отрицательных точечных заряда q1=-9 нКл и q2=-36 нКл расположены на расстоянии r = 3 м друг от друга. Когда в некоторой точке поместили заряд q0, то все три заряда оказались в равновесии. Найти заряд q0 и расстояние между зарядами q1 и q0.

306. На изолированной подставке расположен вертикально тонкий фарфоровый стержень, на который надет полый металлический шарик А радиуса r1 = 1 см (рис. 1). После сообщения шарику заряда q = 60 нКл по стержню опущен такой же незаряженный металлический шарик В с массой m = 0,1 г который соприкасается с шариком А. На каком Рисунок 1
расстоянии h от шарика А будет находиться в равновесии шарик В после соприкосновения? Трением шариков о стержень пренебречь.

307. Два одинаковых заряженных шарика, подвешенных на нитях равной длины в одной точке, разошлись в воздухе на некоторый угол . Какова должна быть плотность материалов ρ из которых изготовлены шарики чтобы при погружении их в керосин (диэлектрическая проницаемость ε = 2) угол между нитями не изменился? Плотность керосина ρк = 0,8·103 кг/м3.

308. Вокруг отрицательного точечного заряда q0 = -15 нКл равномерно движется по окружности под действием силы притяжения маленький заряженный шарик. Чему равно отношение заряда шарика к его массе, если угловая скорость вращения шарика ω = 5 рад/c, а радиус окружности R = 3 см?

309. Два одинаковых шарика подвешены в воздухе на нитях, так что их поверхности соприкасаются. После того как каждому шарику был сообщен заряд q = 0,4 мкКл, шарики разошлись на угол = 60o. Найти массу шариков, если расстояние от центров шариков до точки подвеса l = 0,2 м.

310. Составлен прибор из двух одинаковых проводящих шариков массы m = 24 г, один из которых закреплен, а другой подвешен на нити длины l = 20 см. Шарики, находясь в соприкосновении, получают одинаковые заряды, вследствие чего подвижный шарик отклоняет нить на угол 45o от вертикали. Найти заряд каждого шарика.

311. Два одинаковых шарика, имеющих одинаковые заряды q = 3,3 мкКл, подвешены на одной высоте на тонких невесомых нитях равной длины (рис.2). На одинаковом расстоянии от этих шариков, причем так что h = 20 см ниже их расположен заряд Q. Определить этот заряд, если извест- Рисунок 2
но, что нити висят вертикально, а расстояние между ними d = 30 см.

312. На тонком стержне длиной l = 50 см находится равномерно распределенный электрический заряд с линейной плотностью заряда τ = 400 мкКл/см. На продолжении оси стержня на расстоянии d = 20 см от ближайшего конца находится точечный заряд q = 20 нКл. Найти силу F, с которой взаимодействует заряд q со стержнем.

313. По кольцу радиуса R = 4 см равномерно распределен заряд q = 15 мкКл. Определите напряженность электрического поля в центре кольца, а также в точке, находящейся на расстоянии h = 3 см от центра кольца на прямой, проходящей через центр кольца и перпендикулярной к его плоскости.

314. По тонкому полукольцу, радиус кривизны которого R = 5 см равномерно распределен заряд q = 100 мкКл. Какова напряженность электрического поля в точке, совпадающей с центром полукольца?

315. На трети тонкого кольца радиусом R = 2 см равномерно распределен заряд q = 30 мкКл. Определить напряженность электрического поля, создаваемого этим зарядом в точке, совпадающей с центром кольца.

316. Две трети тонкого кольца радиусом R = 10 см несут равномерно распределенный заряд с линейной плотностью τ = 60 мкКл/см. Вычислить напряженность электрического поля в точке, совпадающей с центром кольца.

317. Две бесконечно длинные разноименно заряженные нити расположены параллельно на расстоянии d = 5 см друг от друга. Линейная плотность заряда нитей τ1 = 80 нКл/см и τ2 = 60 нКл/см. Найти модуль напряженности результирующего электрического поля в точке, удаленной от первой нити на d1 = 3 см, а от второй на d2 = 4 см.

318. Две бесконечно длинные одноименно заряженные нити расположены параллельно на расстоянии а = 10 см друг от друга. Линейная плотность заряда на нитях одинакова и равна τ = 200 мкКл/м. Найти модуль напряженности результирующего электрического поля в точке, удаленной на d = 10 см от каждой из нитей.

319. Электрическое поле создано двумя бесконечными параллельными пластинами, несущими равномерно распределенный по их поверхности заряд с поверхностными плоскостями σ1 = 0,6 пКл/см2 и σ2 = -0,4 пКл/см2. Определить модуль напряженности результирующего поля между пластинами и вне пластин.

320. Электрическое поле создано двумя бесконечными параллельными пластинами, несущими равномерно распределенный по их поверхности заряд с поверхностными плоскостями σ1 = 14 пКл/см2 и σ2 = 10 пКл/см2. Определить модуль напряженности результирующего поля между пластинами и вне пластин.

321. На двух концентрических сферах радиусами R и 3R равномерно распределены заряды с поверхностными плотностями и σ. Используя теорему Гаусса, вычислить напряженность в точках, удаленных от центра на расстоянии ½R, 2,5R и 3R. Принять σ = 0,2 мкКл/м2.

322. На двух концентрических сферах радиусами R и 2R равномерно распределены заряды с поверхностными плотностями 2σ и σ. Используя теорему Гаусса, вычислить напряженность в точках, удаленных от центра на расстоянии 1,5R и 3R. Принять σ = 0,3 мкКл/м2.

323. N одинаковых шарообразных капелек ртути заряжены до одного и того же потенциала V. Каков будет потенциал V1 большой капли, получившейся в результате слияния этих капелек?

324. Определить потенциальную энергию электростатического взаимодействия системы четырех точечных зарядов, расположенных в вершинах квадрата со стороной L = 10 см. Заряды одинаковы по модулю q = 10 нКл, но два из них отрицательные, причем в противоположных вершинах квадрата расположены заряды разных знаков.

325. Шарики радиусами по r = 1 см имеют заряды q1 = 50 нКл и q2 = –10 нКл. Найти энергию, которая выделится при разряде, если шарики соединить проводником.

326. Мыльному пузырю сообщается заряд, вследствие чего его радиус увеличивается в четыре раза. Определить изменение энергии заряда, находящегося на пузыре при увеличении его радиуса.

327. В электронно-лучевой трубке осциллографа электроны ускоряются, двигаясь в электрическом поле. В некоторой точке поля с потенциалом φ0 = 600 В электрон имел скорость υ = 20 Мм/с. Определить потенциал точки поля, дойдя до которой электрон увеличит свою скорость вдвое.

328. Электрическое поле создано заряженным металлическим шаром, потенциал которого φ = 300 В. Определить работу сил поля по перемещению заряда q = 2 мкКл из точки 1 в точку 2 (рис. 3). 329. Разность потенциалов между като- Рисунок 3

дом и анодом электронной лампы равна Δφ = 120 В, расстояние d = 2 мм. С каким ускорением движется электрон от катода к аноду? Какова скорость электрона в момент удара об анод? Поле считать однородным.

330. Электрон, пролетая в электрическом поле от точки а к точке b, увеличил свою скорость с υ1 = 1000 км/c до υ2 = 3000 км/c. Найти разность потенциалов между точками а и b электрического поля.

331. Протон влетает в плоский горизонтально расположенный конденсатор параллельно его пластинам со скоростью υ = 120 км/с. Напряженность электрического поля внутри конденсатора E = 3 кВ/м; длина конденсатора l = 10 см. Вычислить поверхностную плотность заряда на пластинах конденсатора. Во сколько раз модуль скорости протона при вылете из конденсатора будет больше, чем модуль его начальной скорости? Влиянием силы тяжести пренебречь.

332. Первоначально покоящийся электрон, пройдя в плоском конденсаторе путь от одной пластины до другой, приобретает скорость υ = 1 Мм/с. Расстояние между пластинами d = 5,3 мм. Найти разность потенциалов между пластинами, напряженность электрического поля внутри конденсатора, поверхностную плотность заряда на пластинах. Влиянием силы тяжести пренебречь.

333. Электрон влетает в плоский горизонтальный конденсатор параллельно его пластинам со скоростью υ0 = 1∙107 м/c. Напряженность поля в конденсаторе E = 100 В/см, длина конденсатора l = 5 см. Найти модуль и направление скорости электрона в момент вылета его из конденсатора. На сколько отклонится электрон от первоначального направления?

334. Между пластинами плоского воздушного горизонтально расположенного конденсатора находится заряженная капля масла массой m = 3∙10-8 г. Заряд капли q = 3∙10-15 Кл. При разности потенциалов между пластинами U = 500 В и начальной скорости υ0 = 0 м/c капля проходит некоторое расстояние в 2 раза медленнее, чем при отсутствии электростатического поля. Найти расстояние между пластинами. Сопротивлением воздуха пренебречь.

335. Электрон влетел в однородное электростатическое поле напряженностью E = 104 В/м со скоростью υ0 = 8 Мм/с перпендикулярно силовым линиям. Вычислить модуль и направление скорости электрона в момент времени t = 2 нс.

 



Дата добавления: 2021-12-14; просмотров: 135;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.019 сек.