Уравнение плоскости


Через данную точку проходит единственная плоскость , параллельная двум данным неколлинеарным векторам и .

Пусть в пространстве задан аффинный репер и , . Точка принадлежит плоскости тогда и только тогда, когда векторы компланарны, то есть вектор можно выразить через векторы и :

.

Переходя к координатам, найдем уравнения, которым должны удовлетворять координаты точки, принадлежащей плоскости:

параметрические уравнения плоскости.

Условием компланарности векторов является равенство нулю определителя, составленного из координат этих векторов:

общее уравнение плоскости.

Общее уравнение плоскости приводится к виду

, где .

Пусть плоскость пересекает все три оси координат в точках . Имеем два неколлинеарных вектора и , параллельных плоскости . Тогда получаем уравнение плоскости

или уравнение плоскости в отрезках.

Через данную точку проходит единственная плоскость , перпендикулярная данному ненулевому вектору . Вектор , как и любой другой ненулевой вектор, перпендикулярный плоскости , называется нормальным вектором плоскости.

Точка принадлежит плоскости тогда и только тогда, когда векторы и ортогональны, то есть их скалярное произведение равно нулю. Чтобы выразить условие ортогональности векторов через координаты, необходим ортонормированный базис, а значит, в пространстве должна быть задана прямоугольная система координат . Пусть , . Выразив условие ортогональности векторов и через координаты, получим уравнение плоскости : .

Выводы:

1. Чтобы составить уравнение плоскости, надо знать точку и два неколлинеарных вектора, параллельных этой плоскости, либо точку и нормальный вектор.

2. Уравнение плоскости приводится к виду

, где ,

то есть плоскость является алгебраической поверхностью первого порядка.

Т е о р е м а. Любая алгебраическая поверхность первого порядка является плоскостью.

Д о к а з а т е л ь с т в о. Для алгебраической поверхности первого порядка существует аффинная система координат, относительно которой поверхность задается уравнением , где .

Пусть . Приведя уравнение поверхности к виду , получим равносильное уравнение

 

.

Это есть уравнение плоскости, проходящей через точку параллельно векторам и .

 



Дата добавления: 2021-09-25; просмотров: 281;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.007 сек.